0.论文信息
Mur-Artal R , Tardos J D . Visual-Inertial Monocular SLAM With Map Reuse[J]. IEEE Robotics and Automation Letters, 2017, 2(2):796-803.
是ORB-SLAM系列中实现IMU传感器添加的一篇论文,主要特点在于:
单目+IMU的对准方法
紧组合的VI-SLAM的实现
1.摘要
近年来,视觉惯性里程计(VIO)的目标一致在于以高精度和高鲁棒性计算载体的增量运动。但是这些方法缺少了闭环修正误差的能力,导致在即使在传感器反复经过相同的位置的情况下轨迹误差依旧会累积和漂移。在本文的工作中,我们提出了一个紧组合的视觉惯性SLAM系统,它能够进行闭环并且能在已建图的区域实现无漂移的定位。我们的方法实际上能适用于任何相机配置,但这里我们讨论的是较复杂的单目相机(由于它存在尺度不定性问题)。同时,我们也提出了一个IMU初始化的方法,在其中计算了尺度、重力方向、速度、陀螺仪和加速度计零偏,并能在数秒时间能达到较高的精度。我们在十一组无人机公开数据集中测试的尺度误差在1%,并能达到分米级的精度。我们在存在重复轨迹的场景下将算法与当前先进的VIO算法进行了比较,证明了我们的方法在有地图辅助的情况下是无漂移和累积误差的。

该博客介绍了论文《Visual-Inertial Monocular SLAM With Map Reuse》,提出了一种紧组合的视觉惯性SLAM系统,结合单目相机和IMU,实现闭环修正以避免轨迹漂移。系统通过IMU初始化计算尺度、重力方向等,实现在无人机数据集上的高精度定位。局部映射和跟踪策略确保实时性能,闭环检测减少误差累积。
最低0.47元/天 解锁文章
2188

被折叠的 条评论
为什么被折叠?



