想要机器学习不“短路”?你需要这些套路!

你知道么?机器学习的算法虽然在不断发展演变,但万变不离其宗,在大部分情况下,所有这些算法都可以划分为 3 类:监督学习、无监督学习和强化学习。
监督学习,可以提供反馈来表明预测正确与否,适用于学习一个已经分类的数据集的映射函数。

在监督学习中,数据集包含其目标输出(或标签),以便函数能够计算给定预测的误差。在做出预测并生成(实际结果与目标结果的)误差时,会引入监督来调节函数并学习这一映射。

无监督学习,可基于数据中的一些隐藏特征对未标记的数据集进行分类。

在无监督学习中,数据集不包含目标输出,因此无法监督函数。函数尝试将数据集划分为“类”,以便每个类都包含数据集的具有共同特征的一部分。

强化学习,与监督学习类似,也可以接收反馈,通过反复探索某个不确定的环境,学习该环境中的决策制定策略。

在强化学习中,算法尝试学习一些操作,以便获得导致目标状态的一组给定状态。误差不会在每个示例后提供(就像监督学习一样),而是在收到强化信号(比如达到目标状态)后提供。此行为类似于人类学习,仅在给予奖励时为所有操作提供必要反馈。

强化学习已经类似于人类学习了?逆天了我的机器!请跟小编一起凌乱30秒。。。

点击“阅读原文”,

深入了解机器学习的每种模型及其关键算法,

毕竟知己知彼才能百战百胜啊~

阅读更多
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

加入CSDN,享受更精准的内容推荐,与500万程序员共同成长!
关闭
关闭