图像处理
文章平均质量分 56
java处理图像识别功能,可以根据样本照片筛选数据库中相类似的图片,有完整的程序代码
优惠券已抵扣
余额抵扣
还需支付
¥99.90
¥299.90
购买须知?
本专栏为图文内容,最终完结不会低于15篇文章。
订阅专栏,享有专栏所有文章阅读权限。
本专栏为虚拟商品,基于网络商品和虚拟商品的性质和特征,专栏一经购买无正当理由不予退款,不支持升级,敬请谅解。
Sunshine_gao
五年java开发经验
展开
-
java语言实现 基于颜色检索【直方图检索,欧式距离、巴士系数法、HSV中心距法】、基于形状检索【形状不变矩法、边缘直方图法】、基于纹理检索【灰度矩阵法】、基于OPENCV的人脸识别
14年大学的时候做的项目,基于java语言进行图像识别,可根据直方图检索,欧式距离、巴士系数法、HSV中心距法、形状不变矩法、边缘直方图法、灰度矩阵法等算法识别出库中相似的图片,废话不多说,先看效果图,后面上代码。代码:MainFrame.javapackage com.gao;import java.awt.BorderLayout;import java.awt.Color;import java.awt.Dimension;import java.awt.FlowLayou.原创 2021-04-21 21:43:15 · 525 阅读 · 0 评论 -
基于内容的图像检索(颜色,直方图相交法,)java实现代码
直方图特征: 对颜色特征的表达方式有许多种,我们采用直方图进行特征描述。常见的直方图有两种:统计直方图,累积直方图。我们将分别实验两种直方图在图像聚类和检索中的性能。l 统计直方图 为利用图像的特征描述图像,可借助特征的统计直方图。图像特征的统计直方图实际是一个1-D的离散函数,即: 上式中k代表图像的特征原创 2014-05-20 14:23:30 · 5292 阅读 · 2 评论 -
Eclipse+Java+OpenCV249环境搭建和代码测试
1.首先下载OpenCV2.4.9,下载的时候,选择windows版的。然后安装2.其实安装的过程就是解压的过程,并没有什么安装向导之类的,安装完成后,我们最关心的是这个目录:opencv\build\java 如下图所示 3,建立项目 JavaOpenCv249原创 2014-06-12 22:12:48 · 2550 阅读 · 0 评论 -
灰度共生矩阵 源码学习
#include #include #include #include #include #include #include using namespace Magick; using namespace std; #define Graynumber 8//灰度化维数#define Dimension 4/转载 2014-05-26 22:57:30 · 1874 阅读 · 0 评论 -
颜色矩
颜色矩: 颜色矩是一种简单而有效的颜色特征,是由Stricker和Oreng提出的,这种方法的数学基础是图像中的任何的颜色分布均可以用它的矩来表示。此外,由于颜色分布信息主要集中在低阶矩中,因此,仅采用颜色的一阶矩(mean)、二阶矩(Variance)和三阶矩(Skewness)就足以表达图像的颜色分布,与颜色直方图相比,该方法的另一个好处是无须对特征进行量化。原创 2014-05-25 19:49:04 · 6102 阅读 · 0 评论 -
图像相似度计算方法
图像相似度计算主要用于对于两幅图像之间内容的相似程度进行打分,根据分数的高低来判断图像内容的相近程度。 可以用于计算机视觉中的检测跟踪中目标位置的获取,根据已有模板在图像中找到一个与之最接近的区域。然后一直跟着。已有的一些算法比如BlobTracking,Meanshift,Camshift,粒子滤波等等也都是需要这方面的理论去支撑。 还有一方面就是基于图像内容的图像检索转载 2014-05-24 21:27:23 · 8472 阅读 · 1 评论 -
相似度度量 距离
在数据分析和数据挖掘的过程中,我们经常需要知道个体间差异的大小,进而评价个体的相似性和类别。最常见的是数据分析中的相关分析,数据挖掘中的分类和聚类算法,如K最近邻(KNN)和K均值(K-Means)。当然衡量个体差异的方法有很多,最近查阅了相关的资料,这里整理罗列下。为了方便下面的解释和举例,先设定我们要比较X个体和Y个体间的差异,它们都包含了N个维的特征,即X=(x1, x2, x3,翻译 2014-05-24 20:32:27 · 1519 阅读 · 0 评论 -
基于HSV分块颜色直方图的图像检索算法
引 言 随着多媒体技术及[nternet技术的迅速发展,各行各业对图像的使用越来越广泛,图像信息资源的管理和检索显得越来越重要。传统的通过手工标记和索引图像(即基于文本的图像检索)的方法已经不能满足人们的需求,随之而来的问题是:随着图像数据的剧增和人们对图像的理解具有不同的侧重点,不同的人从不同的角度对同一幅图像的认识可能存在很大的差异性,因此无法准确反映图像翻译 2014-05-22 20:09:08 · 14447 阅读 · 2 评论 -
Sobel边缘检测算法
索贝尔算子(Sobel operator)主要用作边缘检测,在技术上,它是一离散性差分算子,用来运算图像亮度函数的灰度之近似值。在图像的任何一点使用此算子,将会产生对应的灰度矢量或是其法矢量转载 2014-06-06 09:31:09 · 2179 阅读 · 0 评论 -
颜色直方图, HSV直方图, histogram bins
颜色特征是在图像检索中应用最为广泛的视觉特征,主要原因在于颜色往往和图像中所包含的物体或场景十分相关。此外,与其他的视觉特征相比,颜色特征对图像本身的尺寸、方向、视角的依赖性较小,从而具有较高的鲁棒性。面向图像检索的颜色特征的表达涉及到若干问题。首先,我们需要选择合适的颜色空间来描述颜色特征;其次,我们要采用一定的量化方法将颜色特征表达为向量的形式;最后,还要定义一种相似度(距离)标准用来转载 2014-05-21 21:19:07 · 7778 阅读 · 0 评论 -
图像检索:基于形状特征的算法
本文节选自《基于形状特征的图像检索算法研究》基于形状特征的图像检索算法相对于颜色特征和纹理特征来说,使用的稍微少一些。摘录了其中的几种算法,不做深入剖析了。形状通常与图像中的特定目标对象有关,是人们的视觉系统对目标的最初认识,有一定的语义信息,被认为是比颜色特征和纹理特征更高一层的特征。形状描述的准确与否是决定图像检索算法优劣的重要因素,一个好的形状描述符应具备独特性、完备性、几何翻译 2014-06-04 22:44:16 · 3327 阅读 · 0 评论 -
图像特征提取
特征提取是计算机视觉和图像处理中的一个概念。它指的是使用计算机提取图像信息,决定每个图像的点是否属于一个图像特征。特征提取的结果是把图像上的点分为不同的子集,这些子集往往属于孤立的点、连续的曲线或者连续的区域。 特征的定义 至今为止特征没有万能和精确的定义。特征的精确定义往往由问题或者应用类型决定。特征是一个数字图像中“有趣”的部分,它是许多计算机图像分析算法的起点转载 2014-05-21 21:28:27 · 2117 阅读 · 0 评论 -
颜色特征的提取
颜色特征是在图像检索中应用最为广泛的视觉特征,主要原因在于颜色往往和图像中所包含的物体或场景十分相关。此外,与其他的视觉特征相比,颜色特征对图像本身的尺寸、方向、视角的依赖性较小,从而具有较高的鲁棒性。面向图像检索的颜色特征的表达涉及到若干问题:首先,我们需要选择合适的颜色空间来描述颜色特征;其次,我们要采用一定的量化方法将颜色特征表转载 2014-05-21 21:23:32 · 3352 阅读 · 0 评论 -
RGB 转化 HSV代码
public void toHSV3( int red , int green , int blue ){ double maxRGB = FqMath.max( red , green , blue );// double minRGB = FqMath.min( red , green , blue ); double itemp = maxRGB; //原创 2014-05-20 13:47:54 · 6540 阅读 · 0 评论 -
颜色特征提取
颜色特征是在图像检索中应用最为广泛的视觉特征,主要原因在于颜色往往和图像中所包含的物体或场景十分相关。此外,与其他的视觉特征相比,颜色特征对图像本身的尺寸、方向、视角的依赖性较小,从而具有较高的鲁棒性。面向图像检索的颜色特征的表达涉及到若干问题。首先,我们需要选择合适的颜色空间来描述颜色特征;其次,我们要采用一定的量化方法将颜色特征表达为向量的形式;最后,还要定义一种相似度(距离)标准用来转载 2014-05-20 13:45:22 · 1328 阅读 · 0 评论 -
HSV 量化
function L=hsvquan(hsv) %对HSV进行量化,把3个颜色分量合成为一维特征矢量: h=hsv(:,:,1); s=hsv(:,:,2); v=hsv(:,:,3); % 如果对HSV 空间进行适当的量化后再计算直方图, 则计算量要少得多. 我们将H , S ,V 3个分量按照人的颜色感知进行非等间隔的量化, 从对颜色模型的大量分析, 我们把 % 色调H 空间分原创 2014-05-20 13:50:31 · 5732 阅读 · 2 评论 -
HSI、HSV、RGB、CMYK、HSL、HSB、Ycc、XYZ、Lab、YUV颜色模型的区别
HSI、HSV、RGB、CMYK、HSL、HSB、Ycc、XYZ、Lab、YUV颜色模型的区别 HSV颜色空间 HSV(hue,saturation,value)颜色空间的模型对应于圆柱坐标系中的一个圆锥形子集,圆锥的顶面对应于V=1. 它包含RGB模型中的R=1,G=1,B=1 三个面,所代表的颜色较亮。色彩H由绕V轴的旋转角给定。红色对应于 角度0° ,绿色对应于角度120°,蓝色转载 2014-05-20 13:43:04 · 2056 阅读 · 0 评论