信仰、支撑逻辑、行情、发展阶段

本文探讨了数字货币如比特币和以太坊的信仰根基,分析其生态支撑逻辑与阶段发展,预测以太坊可能成为数字白银,同时预警经济环境对行情的影响。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

大腰子好,同学们好
内容有点多,大家慢慢看,这是我的所感所想,希望对你们有帮助。

大家别急,慢慢看,看完就明白我要说什么了。

信仰与支撑逻辑
前几天大跌,好多人信仰没了,每次大跌,信仰就会动摇,所以呢,咱们得先清楚信仰是怎么来的,到底在信仰什么。
只以价格涨跌论信仰,那就叫迷信,早晚得出局。
数字货币的信仰就是,生态支撑:众多技术人员在维护公链、创建应用、众多传统金融机构正在进入该领域。
三大、bakkt、coinbase,比特大陆、众多矿场、分析师们、媒体从业者,都这为这个圈子提供支撑。就算有问题,它不会
立刻崩塌。
一个系统的崩塌要么是因为强大外力,要么是因为内部分裂。
我还没看出有什么内部分裂,虽然公链分裂了几次,但都活活的好好地,时不时还制造点绯闻。。。,交易所之间也经常制造绯闻。。。
外部强力呢?
币圈很大部分本来就是去中心的,不易摧毁。币价大涨大跌,也说明其极大的伸缩性,抗压能力极强。观摩历史,币圈很难消亡,外部环境再恶劣,依然可以存活,别忘了,它可是金融危机时圣诞的,专门对抗危机。
所以,币价大跌时,大家恐慌、彷徨、迷茫时,想想三大会不会因为币价大跌倒下,比特大陆会不会倒下?三大倒了,还有coinbase,还有其他交易所出现,比特大陆到了,还有嘉楠耘智,对不对?
这个生态有支撑,没那么容易被干掉。我们的信仰就是币价背后的生态支撑。


谈阶段
我们必须清楚区块链发展到什么阶段了,否则信仰无从寻迹。
我们正在建立的是未来机器网络世界,第一代互联网打造的是信息基础,我们正在经历第二代价值建立,之后才是网络世界生产力大爆发时代。
大家总在讨论区块链无法落地,没错,这是现状。是因为目前的公链,就不是能让区块链项目落地的。btc、以太坊公链是在打造机器网络世界的价值基础,这两种有及其丰富的生态,尤其是以太坊,其开发套件是最多的。还有各种游戏Dapp,defi、支付工具等等。

这些工具、应用都是在完善这两个公链的支付、流通体系。
就像淘金时期的周边生态一样,卖工具的、开酒馆、开旅店的。
但是,就算以太坊2.0完成,由于性能限制,依然无法承载众多高性能的Dapp,就目前的技术,不可能三角仍无法突破。
所以,以太坊之后很有可能出现更高性能的公链,此公链,要么是采用创新技术,突破了不可能三角限制,要么把共识与业务分层处理。
新型公链,应该架构在btc、eth公链基础之上,接受btc、eth储备资产,并且,可以满足高性能业务要求。
如果是分层处理,
底层,作为共识层,处理共识问题。
上层,应适用去中心与中心化业务。对于需要中低性能,高安全、高透明的业务,有可能使用DPos机制处理。
对于需要高性能的业务,采用中心服务器处理。
未来的区块链,有可能是中心化与去中心的融合产物。
btc、eth公链,则转变为底层储备资产公链,负责btc、eth承载、流通。
也许btc、eth在很长时间里会作为区块链生态的储备资产长期存在,btc与以太坊公链则是数字金银矿。
说这些也许有的同学觉得没用,“我们都知道”,或者“币价涨了才有用,不涨就是垃圾”。

请看清上面对于btc与eth的定位,“未来区块链世界的储备资产”。
btc、eth属于长跑选手,可以跑赢大部分币种。山寨币涨的恨不得比锆石导弹还快,但是,btc、eth能走得比“旅行者一号”还远,
他们有更高概率伴随区块链成长。
因为他们有强共识、经历了时间检验。
“不谋一世者不足以谋一时,不谋全局者不足以谋一域”,都说他们有价值,但必须清楚其价值在哪里,未来会怎么发展,我们才能真正拿住。否则,碰到暴跌,又要出场了。


谈eth
eth很有可能成为数字白银。因为以太坊的技术最强、生态最广、金融应用很多,eth的应用场景正在不断拓展。
以太坊已经开发6年了,有辉煌、有低谷、经受了时间考验,正在再次崛起。这种共识除了btc,无可替代。
除了以上说的eth生态,还有一个重要的因素,金银的比价同btc、eth比价相似。

下图是1900年来以美元标价的黄金和白银比价关系走势。就是用每年的黄金价格,除以每年的白银价格,所得结果,也就是黄金是白银的多少倍,做的比价图。
在100多年的时间内,金银比价均匀为47倍,最高为96倍,最低为18倍。

下图是2017年11月来以btc和eth比价关系走势。就是用每月的btc最高价格,除以每月eth最高价格,所得结果,也就是btc与eth的的倍数做的比价图。
 

https://www.dydata.io/show/c_707dcfd5df6c88bde1960e16780b522a
这是我做的数据图链接

btc、eth比价均价为29倍,最高为50倍,最低为10倍。

btc、eth最高、最低、均值的数值,几乎是金银最高、最低、均值的1/2.

他们的比价存在某种联系,那么我们可不可以大胆联想,金银之间的关系同样适用于btc与eth之间。

btc与eth可能会再次上演金银走势的历史。
根据以太坊的生态发展,btc与eth的比价关系,咱们有理由相信,eth很有可能成为数字白银。

那么,eht价格能到多少?
咱们算算,上轮牛市btc最高价19875与eth1422的比价为13.9≈14倍,按照btc与eth较低倍数计算。
当btc 3万,eth 2142
当btc 5万,eth  3571        
当btc 10万,eth 7142
保守估计,这次牛市如果btc达到5万,eth 高点有可能是 3571。


谈行情
我们真正的对手不是庄,是经济环境,是美股。经济本来就有问题,又雪上加霜。
美国的服务业占比80%,受疫情冲击最严重的就是服务业。美联储搞无限量化宽松,肯定是看到了
我们了解不到的潜在危机。最要命的就是看不到的危险,不知道何时爆发,会不会引起连锁反应。
这两天美国确诊人数有所下降,但是连带危机都体现了吗?。
美国还嚷嚷要打仗,不管出于什么目的,反正是作死。美股还会二次探底,btc也会跟着下跌,
我们就在成本价附近等着。
金融投资由确定性+不确定性组成,最重要的就是那“不确定性”。
前几次大跌,就是因为“不确定性”,让很多人损失不少。我们要预防的就是“不确定性”,
外围环境那么不好,“不确定性”在增加。
我们别跟着主力瞎折腾,搞不好,他也自身难保。
不要相信其他人说能在危机时赚钱,别学他逆势而动。
危机时刻,最能体现大腰子的价值,他没法教你火中取栗,但能在最危险的时候让你活到黎明,看见日出。。。
赚钱的别嘚瑟,被套的别着急,等待黎明!!!
说了这么多,谁知道eth挖矿成本是多少?(*/ω\*)

我是听着这首歌写的,希望大家内心都有一个明亮的星,照亮投资路。
http://bd.kuwo.cn/search/list?key=%E5%A4%9C%E7%A9%BA%E4%B8%AD%E6%9C%80%E4%BA%AE%E7%9A%84%E6%98%9F%20%E4%BA%8E%E6%AF%85
 

<think>好的,用户现在想知道在Halcon中如何去除点云数据中的离群点。首先,我需要回忆一下Halcon的相关功能模块。Halcon作为一款强大的机器视觉库,确实有处理3D点云的功能。我记得Halcon提供了一些滤波和形态学操作来处理点云数据,可能包括离群点去除。 接下来,我需要确认用户的需求是否与之前的引用内容相关。用户之前提到了使用Open3D和PCL库的方法,但现在转向Halcon,所以需要找到Halcon中对应的功能。可能需要查看Halcon的文档,找到类似于统计滤波或半径滤波的方法。 然后,用户可能需要具体的代码示例和步骤说明。比如如何加载点云、应用滤波算法、可视化结果等。Halcon中使用的是HDevelop环境,代码结构和语法可能与Python有所不同,但用户可能更关注逻辑流程。 另外,Halcon中的点云处理可能涉及3D对象模型的操作,例如访问点云数据、设置滤波参数等。需要确认是否有类似于remove_statistical_outlier的函数,或者是否通过其他方式实现,比如基于密度的滤波或阈值处理。 还需要考虑用户可能的错误点,比如参数设置不当导致过度滤波或效果不佳。因此,在回答中应该提到参数调整的重要性,并给出一些典型值作为参考。 最后,用户可能需要了解不同方法的适用场景,比如统计滤波和半径滤波的区别,以便根据实际情况选择合适的方法。同时,生成的相关问题需要围绕Halcon的其他点云处理功能、参数优化以及应用场景展开。</think>在Halcon中去除点云离群点的主要方法是通过3D滤波算法实现。以下是两种典型解决方案及代码示例: ### 方法一:基于统计滤波离群点移除 ```halcon * 读取点云数据 read_object_model_3d('point_cloud.ply', 'm', [], [], ObjectModel3D, Status) * 统计滤波参数设置 num_neighbors := 20 // 邻域点数阈值 std_dev := 2.0 // 标准差倍数阈值 * 执行统计滤波 select_points_object_model_3d(ObjectModel3D, 'statistical_outlier_removal', \ [num_neighbors, std_dev], FilteredObjectModel) * 可视化处理结果 visualize_object_model_3d(FilteredObjectModel, [], [], [], [], WindowHandle) ``` 该方法通过分析每个点邻域内点的分布特征,移除不符合统计规律的异常点[^2]。参数`num_neighbors`控制邻域范围,`std_dev`决定离群点判定阈值。 ### 方法二:基于半径滤波离群点移除 ```halcon * 设置半径滤波参数 radius := 0.4 // 搜索半径(单位与点云一致) min_points := 5 // 最小邻域点数 * 执行半径滤波 select_points_object_model_3d(ObjectModel3D, 'radius_outlier_removal', \ [radius, min_points], FilteredObjectModel) * 可视化结果对比 create_window_3d(WindowHandle, 0, 0, 800, 600, 'visible', '', '') disp_object_model_3d(WindowHandle, FilteredObjectModel) ``` 此方法依据每个点周围指定半径内的邻点数量进行过滤,适用于均匀分布的点云数据[^3]。 ### 参数调整建议 1. **统计滤波**:建议从`num_neighbors=20`开始尝试,逐步调整`std_dev`值(1.0-3.0) 2. **半径滤波**:根据点云密度设置`radius`,通常取平均点距的3-5倍 3. 可通过`get_object_model_3d_params`获取点云密度信息辅助参数设置 ### 可视化对比技巧 使用`visualize_object_model_3d`时,建议: ```halcon * 显示原始与处理后对比 dev_open_window(0, 0, 800, 600, 'black', WindowHandle1) visualize_object_model_3d([ObjectModel3D, FilteredObjectModel], \ [], [], [], [], WindowHandle1) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值