C++二叉查找树实现过程详解


什么是二叉查找树

在数据结构中,有一个奇葩的东西,说它奇葩,那是因为它重要,这就是树。而在树中,二叉树又是当中的贵族。二叉树的一个重要应用是它们在查找中的应用,于是就有了二叉查找树。 使二叉树成为一颗二叉查找树,需要满足以下两点:

  • 对于树中的每个节点X,它的左子树中所有项的值都要小于X中的项;
  • 对于树中的每个节点Y,它的右子树中所有项的值都要大于X中的项。
二叉查找树的基本操作

以下是对于二叉查找树的基本操作定义类,然后慢慢分析是如何实现它们的。

  1. template<class T>
  2. class BinarySearchTree
  3. {
  4. public:
  5.     // 构造函数,初始化root值
  6.     BinarySearchTree() : root(NULL){}

  7.     // 析构函数,默认实现
  8.     ~BinarySearchTree() {}

  9.     // 查找最小值,并返回最小值
  10.     const T &findMin() const;

  11.     // 查找最大值,并返回最大值
  12.     const T &findMax() const;

  13.     // 判断二叉树中是否包含指定值的元素
  14.     bool contains(const T &x) const;

  15.     // 判断二叉查找树是否为空
  16.     bool isEmpty() const { return root ? false : true; }

  17.     // 打印二叉查找树的值
  18.     void printTree() const;

  19.     // 向二叉查找树中插入指定值
  20.     void insert(const T &x);

  21.     // 删除二叉查找树中指定的值
  22.     void remove(const T &x);

  23.     // 清空整个二叉查找树
  24.     void makeEmpty() const;

  25. private:
  26.     // 指向根节点
  27.     BinaryNode<T> *root;

  28.     void insert(const T &x, BinaryNode<T> *&t) const;
  29.     void remove(const T &x, BinaryNode<T> *&t) const;
  30.     BinaryNode<T> *findMin(BinaryNode<T> *t) const;
  31.     BinaryNode<T> *findMax(BinaryNode<T> *t) const;
  32.     bool contains(const T &x, BinaryNode<T> *t) const;
  33.     void printTree(BinaryNode<T> *t) const;
  34.     void makeEmpty(BinaryNode<T> *&t) const;
  35. };
复制代码

findMin和findMax实现

根据二叉查找树的性质:

  • 对于树中的每个节点X,它的左子树中所有项的值都要小于X中的项;
  • 对于树中的每个节点Y,它的右子树中所有项的值都要大于X中的项。

我们可以从root节点开始:

  • 一直沿着左节点往下找,直到子节点等于NULL为止,这样就可以找到最小值了;
  • 一直沿着右节点往下找,直到子节点等于NULL为止,这样就可以找到最大值了。

如下图所示:

在程序中实现时,有两种方法:

  • 使用递归实现;
  • 使用非递归的方式实现。

对于finMin的实现,我这里使用递归的方式,代码参考如下:

  1. BinaryNode<T> *BinarySearchTree<T>::findMin(BinaryNode<T> *t) const
  2. {
  3.     if (t == NULL)
  4.     {
  5.         return NULL;
  6.     }
  7.     else if (t->left == NULL)
  8.     {
  9.         return t;
  10.     }
  11.     else
  12.     {
  13.         return findMin(t->left);
  14.     }
  15. }
复制代码

在findMin()的内部调用findMin(BinaryNode<T> *t),这样就防止了客户端知道了root根节点的信息。上面使用递归的方式实现了查找最小值,下面使用循环的方式来实现findMax。

  1. template<class T>
  2. BinaryNode<T> *BinarySearchTree<T>::findMax(BinaryNode<T> *t) const
  3. {
  4.     if (t == NULL)
  5.     {
  6.         return NULL;
  7.     }

  8.     while (t->right)
  9.     {
  10.         t = t->right;
  11.     }
  12.     return t;
  13. }
复制代码

在很多面试的场合下,面试官一般都是让写出非递归的版本;而在对树进行的各种操作,很多时候都是使用的递归实现的,所以,在平时学习时,在理解递归版本的前提下,需要关心一下对应的非递归版本。

contains实现

contains用来判断二叉查找树是否包含指定的元素。代码实现如下:

  1. template<class T>
  2. bool BinarySearchTree<T>::contains(const T &x, BinaryNode<T> *t) const
  3. {
  4.     if (t == NULL)
  5.     {
  6.         return false;
  7.     }
  8.     else if (x > t->element)
  9.     {
  10.         return contains(x, t->right);
  11.     }
  12.     else if (x < t->element)
  13.     {
  14.         return contains(x, t->left);
  15.     }
  16.     else
  17.     {
  18.         return true;
  19.     }
  20. }
复制代码

算法规则如下:
  • 首先判断需要查找的值与当前节点值的大小关系;
  • 当小于当前节点值时,就在左节点中继续查找;
  • 当大于当前节点值时,就在右节点中继续查找;
  • 当找到该值时,直接返回true。
insert实现
insert函数用来向儿茶查找树中插入新的元素,算法处理如下:
  • 首先判断需要插入的值域当前节点值得大小关系;
  • 当小于当前节点值时,就在左节点中继续查找插入点;
  • 当大于当前节点值时,就在右节点中继续查找插入点;
  • 当等于当前节点值时,什么也不干。
代码实现如下:
  1. template<class T>
  2. void BinarySearchTree<T>::insert(const T &x, BinaryNode<T> *&t) const
  3. {
  4.     if (t == NULL)
  5.     {
  6.         t = new BinaryNode<T>(x, NULL, NULL);
  7.     }
  8.     else if (x < t->element)
  9.     {
  10.         insert(x, t->left);
  11.     }
  12.     else if (x > t->element)
  13.     {
  14.         insert(x, t->right);
  15.     }
  16. }
复制代码

remove实现
remove函数用来删除二叉查找树中指定的元素值,这个处理起来比较麻烦。在删除子节点时,需要分以下几种情况进行考虑(结合下图进行说明): 如下图所示:
  • 需要删除的子节点,它没有任何子节点;例如图中的节点9、节点17、节点21、节点56和节点88;这些节点它们都没有子节点;
  • 需要删除的子节点,只有一个子节点(只有左子节点或右子节点);例如图中的节点16和节点40;这些节点它们都只有一个子节点;
  • 需要删除的子节点,同时拥有两个子节点;例如图中的节点66等。
对于 情况1,直接删除对应的节点即可;实现起来时比较简单的;
对于 情况2,直接删除对应的节点,然后用其子节点占据删除掉的位置;
对于 情况3,是比较复杂的。首先在需要被删除节点的右子树中找到最小值节点,然后使用该最小值替换需要删除节点的值,然后在右子树中删除该最小值节点。
假如现在需要删除包含值23的节点,步骤如下图所示:
代码实现如下:
  1. template<class T>
  2. void BinarySearchTree<T>::remove(const T &x, BinaryNode<T> *&t) const
  3. {
  4.     if (t == NULL)
  5.     {
  6.         return;
  7.     }

  8.     if (x < t->element)
  9.     {
  10.         remove(x, t->left);
  11.     }
  12.     else if (x > t->element)
  13.     {
  14.         remove(x, t->right);
  15.     }
  16.     else if (t->left != NULL && t->right != NULL)
  17.     {
  18.         // 拥有两个子节点
  19.         t->element = findMin(t->right)->element;
  20.         remove(t->element, t->right);
  21.     }
  22.     else if (t->left == NULL && t->right == NULL)
  23.     {
  24.         // 没有子节点,直接干掉
  25.         delete t;
  26.         t = NULL;
  27.     }
  28.     else if (t->left == NULL || t->right == NULL)
  29.     {
  30.         // 拥有一个子节点
  31.         BinaryNode *pTemp = t;
  32.         t = (t->left != NULL) ? t->left : t->right;
  33.         delete pTemp;
  34.     }
  35. }
复制代码

makeEmpty实现
makeEmpty函数用来释放整个二叉查找树占用的内存空间,同理,也是使用的递归的方式来实现的。具体代码请下载文中最后提供的源码。
总结
这篇文章对数据结构中非常重要的二叉查找树进行了详细的总结,虽然二叉查找树非常重要,但是理解起来还是非常容易的,主要是需要掌握对递归的理解。如果对递归有非常扎实的理解,那么对于树的一些操作,那都是非常好把握的,而理解二叉查找树又是后续的AVL平衡树和红黑树的基础,希望这篇文章对大家有帮助。

原文:果冻想


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值