求解两个序列的所有最长公共子序列(LCSes)

本文介绍了一种使用动态规划和深度优先搜索的C++算法,来求解并输出两个序列的所有最长公共子序列。通过二维数组记录LCS长度,利用栈存储结构辅助,详细阐述了算法思想和程序实现。
摘要由CSDN通过智能技术生成


摘要

本篇博文提供了实现求解所有最长公共子序列的程序实现,并提供输出所有公共子序列的方法解释,需要具备基础知识是求解一个公共子序列的动态规划方法,请自行查阅相关资料。


题目重述

子序列概念:设X=< x1, x2,, xm>,若有1i1< i2< <ikm,使得Z=< z1, z2,, zk> = < xi1, xi2,, xik>,则称ZX的子序列,记为Z<X

      例如: X=<A,B,C,B,D,A,B>,  Z=<B,C,B,A>,  则有Z<X

公共子序列概念:设X,Y是两个序列,则有Z<XZ<Y,则称ZXY的公共子序列。

最长公共子序列:若Z<XZ<Y,且不存在比Z更长的XY的公共子序列,则称ZXY的最长公共子序列,记为

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值