非极大值抑制算法(NMS)及python实现

以下图为例,由于滑动窗口,同一个人可能有好几个框(每一个框都带有一个分类器得分)

è¿éåå¾çæè¿°

而我们的目标是一个人只保留一个最优的框:

于是我们就要用到非极大值抑制,来抑制那些冗余的框: 抑制的过程是一个迭代-遍历-消除的过程。

(1)将所有框的得分排序,选中最高分及其对应的框:

è¿éåå¾çæè¿°

(2)遍历其余的框,如果和当前最高分框的重叠面积(IOU)大于一定阈值,我们就将框删除。

è¿éåå¾çæè¿°

(3)从未处理的框中继续选一个得分最高的,重复上述过程。

è¿éåå¾çæè¿°

 

Python 代码:

# python3
import numpy as np

def py_nms(dets, thresh):
    """Pure Python NMS baseline."""
    #x1、y1、x2、y2、以及score赋值
    x1 = dets[:, 0]
    y1 = dets[:, 1]
    x2 = dets[:, 2]
    y2 = dets[:, 3]
    scores = dets[:, 4]

    #每一个候选框的面积
    areas = (x2 - x1 + 1) * (y2 - y1 + 1)
    #order是按照score降序排序的
    order = scores.argsort()[::-1]

    keep = []
    while order.size > 0:
        i = order[0]
        keep.append(i)
        #计算当前概率最大矩形框与其他矩形框的相交框的坐标,会用到numpy的broadcast机制,得到的是向量
        xx1 = np.maximum(x1[i], x1[order[1:]])
        yy1 = np.maximum(y1[i], y1[order[1:]])
        xx2 = np.minimum(x2[i], x2[order[1:]])
        yy2 = np.minimum(y2[i], y2[order[1:]])

        #计算相交框的面积,注意矩形框不相交时w或h算出来会是负数,用0代替
        w = np.maximum(0.0, xx2 - xx1 + 1)
        h = np.maximum(0.0, yy2 - yy1 + 1)
        inter = w * h
        #计算重叠度IOU:重叠面积/(面积1+面积2-重叠面积)
        ovr = inter / (areas[i] + areas[order[1:]] - inter)

        #找到重叠度不高于阈值的矩形框索引
        inds = np.where(ovr <= thresh)[0]
        #将order序列更新,由于前面得到的矩形框索引要比矩形框在原order序列中的索引小1,所以要把这个1加回来
        order = order[inds + 1]
    return keep

# test
if __name__ == "__main__":
    dets = np.array([[30, 20, 230, 200, 1], 
                     [50, 50, 260, 220, 0.9],
                     [210, 30, 420, 5, 0.8],
                     [430, 280, 460, 360, 0.7]])
    thresh = 0.35
    keep_dets = py_nms(dets, thresh)
    print(keep_dets)
    print(dets[keep_dets])
--------------------- 
作者:Blateyang 
来源:CSDN 
原文:https://blog.csdn.net/Blateyang/article/details/79113030 
版权声明:本文为博主原创文章,转载请附上博文链接!

 


--------------------- 
作者:shuzfan 
来源:CSDN 
原文:https://blog.csdn.net/shuzfan/article/details/52711706 
版权声明:本文为博主原创文章,转载请附上博文链接!

©️2020 CSDN 皮肤主题: 精致技术 设计师:CSDN官方博客 返回首页