- 博客(46)
- 资源 (8)
- 收藏
- 关注
原创 4个Kubernetes的高级技巧
本文讲述了4个Kubernetes的高级技巧,包括:1. 如何做就绪性(Readiness)和存活性(Liveness)检查。2. 如何在Pod中执行命令。3. 如何滚动更新。4. 如何回滚。
2023-09-21 17:25:44
120
原创 只需4步使用Redis缓存优化Node.js应用
在本文中,我们构建了一个 Node.js 程序,该程序 API 获取数据并使用`Redis`进行缓存,只有初次请求和缓存过期后才从API获取数据,之后的请求都从缓存中获取数据,大大缩短请求所用的时间。
2023-09-20 09:29:38
610
1
原创 只需3步部署Django项目到Kubernetes上
本文章通过3步完成了把一个Django项目部署到Kubernetes上。创建镜像部署在Kubernetes环境上配置MySQL。
2023-09-16 17:20:28
1074
1
原创 从0开始实现目标检测——基于YOLOv5
在上次我们利用YOLOv3做目标检测的任务中(参考文章:从0开始实现目标检测——实践篇),我们遗留一些问题,其中一个是利用YOLOv5做一次对比,既然是对比,也就是在数据集不变的情况下,基于YOLOv5进行训练,看看整个模型的mAP是否有变化。整个过程也分为以下4步:1. 为什么是YOLOv5 ?2. 安装体验YOLOv5,并跑通基于公开数据训练YOLOv53. 基于自己的数据训练YOLOv54.计算mAP那么,我们开始吧~
2022-02-18 11:30:00
3737
1
原创 从0开始实现目标检测——实践篇
根据上一篇《从0开始实现目标检测——原理篇》的讲述,我们选择了YOLOv3作为模型,那么本篇文章将继续接着上篇的内容,自己动手基于YOLOv3实现模型训练和mAP的计算。 在自己动手的这个过程中,一边解决遇到的问题,一边体会YOLOv3的原理,让我们学习起来吧。一. YOLOv3之初体验YOLOv3使用参考官网教程:https://pjreddie.com/darknet/yolo/1. 安装YOLOv3并体验VOC数据(1). YOLOv3安装首先就是下载YOLOv3项目并安装了,如下
2022-02-15 23:09:14
2637
2
原创 从0开始实现目标检测——原理篇
一. 任务介绍收到一个任务,对交通场景中的图片进行目标检测,要能识别出指定的6个类别物品在图中的位置。比如要识别下图中的小汽车、行人、自行车、卡车等。比如下图:经过识别后,如图所示:经过目标检测模型预测的图片本系列文章共两篇,总结记录了一个计算机视觉小白,如何一步一步完成这个任务的过程,分为原理篇和实践篇,包括目标检测的原理和算法的学习;模型选择并在公开的数据集合上体验;利用模型在自己的数据集上训练、调试参数、训练加速、结果衡量等过程。要想学透东西,我认为最好的办法还是亲自动
2022-02-15 20:19:47
7818
1
道路交通灯和标志数据集(YOLOv8版)
2023-12-20
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅