索引 索引 索引

對單列建立索引

create index IX_TABLE1_C1 on table1(column1),
create index IX_TABLE1_C2 on table1(column2)

索引的三個問題
索引( Index )是常见的数据库对象,它的设置好坏、使用是否得当,极大地影响数据库应用程序和Database 的性能。虽然有许多资料讲索引的用法, DBA 和 Develo per 们也经常与它打交道,但笔者发现,还是有不少的人对它存在误解,因此针对使用中的常见问题,讲三个问题。此文所有示例所用的数据库是Oracle 8.1.7 OPS on HP N se ries ,示例全部是真实数据,读者不需要注意具体的数据大小,而应注意在使用不同的方法后,数据的比较。本文所讲基本都是陈词滥调,但是笔者试图通过实际的例子,来真正让您明白事情的关键。
第一讲、索引并非总是最佳选择   
如果发现Oracle 在有索引的情况下,没有使用索引,这并不是Oracle 的优化器出错。在有些情况下,Oracle 确实会选择全表扫描Full Table Scan),而非索引扫描Index Scan)。这些情况通常有:
1.        表未做statistics, 或者 statistics 陈旧,导致 Oracle判断失误。
2.        根据该表拥有的记录数和数据块数,实际上全表扫描要比索引扫描更快。
对第1种情况,最常见的例子,是以下这句sql 语句:
select count(*) from mytable;  
在未作statistics 之前,它使用全表扫描,需要读取6000多个数据块(一个数据块是8k), 做了statistics 之后,使用的是 INDEX (FAST FULL S CAN) ,只需要读取450个数据块。但是,statistics 做得不好,也会导致Oracle 不使用索引。
第2种情况就要复杂得多。一般概念上都认为索引比表快,比较难以理解什么情况下全表扫描要比索引扫描快。为了讲清楚这个问题,这里先介绍一下Or acle 在评估使用索引的代价(cost)时两个重要的数据:CF(Clustering factor) 和 FF(Filtering fact or).
CF: 所谓 CF, 通俗地讲,就是每读入一个索引块,要对应读入多少个数据块。
FF: 所谓 FF, 就是该sql 语句所选择的结果集,占总的数据量的百分比。
大约的计算公式是:FF * (CF + 索引块个数) ,由此估计出,一个查询, 如果使用某个索引,会需要读入的数据块块数。需要读入的数据块越多,则 cost 越大,Orac le 也就越可能不选择使用 index. (全表扫描需要读入的数据块数等于该表的实际数据块数).
其核心就是, CF 可能会比实际的数据块数量大。CF 受到索引中数据的排列方式影响,通常在索引刚建立时,索引中的记录与表中的记录有良好的对应关系,CF 都很小;在表经过大量的插入、修改后,这种对应关系越来越乱,CF 也越来越大。此时需要 DB A 重新建立或者组织该索引。
如果某个sql 语句以前一直使用某索引,较长时间后不再使用,一种可能就是 CF 已经变得太大,需要重新整理该索引了。
FF 则是Oracle 根据 stati stics 所做的估计。比如, mytables表有32万行,其主键myid的最小值是1,最大值是409654,考虑以下sq l 语句:
Select * from mytables where myid>=1;
    和Select * from mytables where myid>=400000
这两句看似差不多的 sql语句,对Oracle 而言,却有巨大的差别。因为前者的 FF 是100%, 而后者的 FF 可能只有 1%。如果它的CF 大于实际的数据块数,则Oracl e 可能会选择完全不同的优化方式。而实际上,在我们的数据库上的测试验证了我们的预测. 
第二讲、索引也有好坏  
索引有 B tree 索引, Bit map 索引, Reverse b tree 索引,等。最常用的是 B tree 索引。 B 的全称是Balanced , 其意义是,从 tree 的 root 到任何一个leaf,要经过同样多的 level. 索引可以只有一个字段(Single column), 也可以有多个字段(Composite), 最多32个字段,8I 还支持Function-based index. 许多de veloper 都倾向于使用单列B 树索引。
所谓索引的好坏是指:
1.        索引不是越多越好。特别是大量从来或者几乎不用的索引,对系统只有损害。OLTP系统每表超过5个索引即会降低性能,而且在一个sql 中, Oracl e 从不能使用超过 5个索引。
2.        很多时候,单列索引不如复合索引有效率。
3.        用于多表连结的字段,加上索引会很有作用。
那么,在什么情况下单列索引不如复合索引有效率呢?有一种情况是显而易见的,那就是,当sql 语句所查询的列,全部都出现在复合索引中时,此时由于 Oracle 只需要查询索引块即可获得所有数据,当然比使用多个单列索引要快得多。(此时,这种优化方式被称为 Index o nly access path)。
第三讲、索引再好,不用也是白搭
抛开前面所说的,假设你设置了一个非常好的索引,任何傻瓜都知道应该使用它,但是Oracle 却偏偏不用,那么,需要做的第一件事情,是审视你的 sql 语句。
Oracle 要使用一个索引,有一些最基本的条件:
1,        where 子句中的这个字段,必须是复合索引的第一个字段; 
2,        where 子句中的这个字段,不应该参与任何形式的计算。
具体来讲,假设一个索引是按 f1, f2, f3的次序建立的,现在有一个 sql 语句, where 子句是 f2= : var2, 则因为 f2 不是索引的第1个字段,无法使用该索引。
第2个问题,则在我们之中非常严重。以下是从 实际系统上面抓到的几个例子:
Select jobid from mytabs where isReq='0' and to_date (updatedate) >= to_Date ( '2001-7-18', 'YYYY-MM-DD');
以上的例子能很容易地进行改进。请注意这样的语句每天都在我们的系统中运行,消耗我们有限的cpu和 内存资源。
除了1,2这两个我们必须牢记于心的原则外,还应尽量熟悉各种操作符对 Oracle 是否使用索引的影响。这里我只讲哪些操作或者操作符会显式(explic itly)地阻止 Oracle 使用索引。以下是一些基本规则:
1,        如果 f1 和 f2 是同一个表的两个字段,则 f1>f2, f1>=f2, f1;
2,        f1 is null, f1 is no t null, f1 not in, f1 !=, f1 lik e ‘%pattern%’;
3,        Not exist ;
4,        某些情况下,f1 in 也会不用索引;
对于这些操作,别无办法,只有尽量避免。比如,如果发现你的sql 中的 in 操作没有使用索引,也许可以将 in 操作改成 比较操作 + union all。笔者在实践中发现很多时候这很有效。
但是,Oracle 是否真正使用索引,对所写的复杂的 sql, 在将它写入应用程序之前Oracle 对该 sql 的解析(plan),可以明确地看是否真正有效,还是必须进行实地的测验。合理的做法是,先在产品数据库上做一次explain . explain 会获得到 Oracle 是如何优化该 sql 的。


位圖索引

Oracle9i引入了一种新的方法来加速对大型数据仓表格的连接(join)查询。这种新的方法,即位图连接索引(bitmap join index),要求创建一个索引,有这个索引在它被创建的时候进行合并操作,然后为连接中用到的关键字创建一个位图索引。



位图连接索引背后的技术其实是把低基数数据列预先连接在一起,这样就让整体的连接(操作)进行得更快。在本文的例子里,我们将使用一个零件和供应商之间的多对多关系。每个零件都由多个供应商供应,而每个供应商能够提供多种零件。这个数据库里有200种不同类型的零件,供应商可以在(美国)所有50个州供应零件。

要创建一个位图连接索引,我们要使用下面的SQL。要注意CREATE INDEX句法里的FROM和WHERE子句。

create bitmap index
   part_suppliers_state
on
   inventory( parts.part_type, supplier.state)
from
   inventory i,
   parts     p,
   supplier  s
where
   i.part_id = p.part_id
and
   i.supplier_id = p.part_id; 

尽管b-tree索引被用在标准的交叉记录(junction record)里,但是我们能够提高Oracle9i查询的性能,在这些查询里判断述词(predicate)会用到低基数数据列。例如,看看下面的查询,我们可以通过这个查询来获得北卡罗来纳的所有火花塞供应商:

select
   supplier_name
from
   parts
natural join
   inventory
natural join
   suppliers
where
   part_type = 'piston'
and
   state = 'nc'


在Oracle9i之前的版本里,这个查询会需要一个对所有三个表格进行嵌套循环连接(nested loop join)或者散列连接(hash join)。而在Oracle9i里,我们可以根据低基数数据列将这三个表格预先连接。

Oracle宣称,当所有的查询数据都驻留在索引之内的时候,使用这种索引方法能够把表格连接的速度提高7倍以上。然而在很多情况下,传统的散列连接或者嵌套循环连接可能会比位图连接做得更好。

位图连接不是一副万能药。下面就是索引的一些局限性:

被索引的数据列必须是低基数的——通常要少于300个完全不同的值。 
在WHERE子句里,查询绝对不能索引哪些没有包含在索引里的数据列。 
更新位图连接索引所需要的代价是相当高的。从实用的角度讲,位图连接索引被抛弃,而在每天晚上进行每日批量加载任务的时候才被重建。只有对于那些在处理的时候保持只读的Oracle数据仓,位图连接索引才会起作用。 
总而言之,位图连接索引会极大地提高特定数据仓查询的速度,但是其代价是在为图索引创建的时候,需要预先连接表格。

展开阅读全文

没有更多推荐了,返回首页