L3-001 凑零钱(30 分)

解决一个支付场景问题:如何从大量不同面值的硬币中选择合适的组合来精确支付特定金额,采用动态规划算法实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

韩梅梅喜欢满宇宙到处逛街。现在她逛到了一家火星店里,发现这家店有个特别的规矩:你可以用任何星球的硬币付钱,但是绝不找零,当然也不能欠债。韩梅梅手边有10^4^枚来自各个星球的硬币,需要请你帮她盘算一下,是否可能精确凑出要付的款额。

输入格式:

输入第一行给出两个正整数:N(<=10^4^)是硬币的总个数,M(<=10^2^)是韩梅梅要付的款额。第二行给出N枚硬币的正整数面值。数字间以空格分隔。

输出格式:

在一行中输出硬币的面值 V~1~ <= V~2~ <= ... <= V~k~,满足条件V~1~ + V~2~ + ... + V~k~ =M。数字间以1个空格分隔,行首尾不得有多余空格。若解不唯一,则输出最小序列。若无解,则输出“NoSolution”。

注:我们说序列{A[1], A[2], ...}比{B[1], B[2], ...}“小”,是指存在k >= 1 使得 A[i]=B[i] 对所有 i < k 成立,并且 A[k] <B[k]。

输入样例1:

8 9
5 9 8 7 2 3 4 1

输出样例1:

1 3 5

输入样例2:

4 8
7 2 4 3

输出样例2:

No Solution

代码:

#include<stdio.h>  
#include<algorithm>  
#include<vector>  
using namespace std;  
int values[10001],dp[101],choose[10001][101];  
bool cmp(int a,int b)  
{  
    return a>b;  
}  
int main()  
{  
    int i,j,n,m,k,t;  
    scanf("%d %d",&n,&m);  
    for(i=1;i<=n;i++)  
    {  
        scanf("%d",&values[i]);  
    }  
    sort(values+1,values+n+1,cmp);  
    for(i=1;i<=n;i++)  
    {  
        for(j=m;j>=values[i];j--)  
        {  
            if(dp[j]<=dp[j-values[i]]+values[i])  
            {  
                choose[i][j]=1;  
                dp[j]=dp[j-values[i]]+values[i];  
            }  
  
        }  
    }  
    if(dp[m]!=m)  
    {  
        printf("No Solution\n");  
        return 0;  
    }  
    int index=n,sum=m;  
    vector<int> arr;  
    while(sum>0)  
    {  
        if(choose[index][sum]==1)  
        {  
  
           arr.push_back(values[index]);  
           sum-=values[index];  
        }  
        index--;  
    }  
    for(i=0;i<arr.size();i++)  
    {  
        if(i==0)  
        {  
            printf("%d",arr[i]);  
        }  
        else  
        {  
            printf(" %d",arr[i]);  
        }  
    }  
    printf("\n");  
    return 0;  
}


### L3-001 零钱问题的 Python 解决方案 以下是基于动态规划方法实现的一个标准解法,用于解决零钱问题。此算法的核心在于通过构建一个数组 `dp` 来记录达到某个金额所需的最少硬币数量。 #### 动态规划核心逻辑 为了找到最小硬币组合的数量,可以定义状态转移方程如下: 设 `coins` 是可用的硬币面额列表,目标金额为 `amount`,则可以通过以下方式计算最优解: \[ dp[i] = \min(dp[i], dp[i - coin] + 1) \] 其中 \( dp[i] \) 表示组成金额 \( i \) 所需的最少硬币数[^2]。 下面是完整的 Python 实现代码: ```python def min_coins(coins, amount): # 初始化 dp 数组,大小为 amount+1 并填充为无穷大 dp = [float(&#39;inf&#39;)] * (amount + 1) # 当金额为 0 时,所需硬币数为 0 dp[0] = 0 # 遍历每一种可能的目标金额 for i in range(1, amount + 1): for coin in coins: if i >= coin and dp[i - coin] != float(&#39;inf&#39;): dp[i] = min(dp[i], dp[i - coin] + 1) return dp[amount] if dp[amount] != float(&#39;inf&#39;) else -1 # 测试用例 if __name__ == "__main__": coins = list(map(int, input().split())) # 输入硬币种类 amount = int(input()) # 输入目标金额 result = min_coins(coins, amount) print(result) ``` 上述代码实现了动态规划的思想来求解最小硬币数目问题。如果无法恰好成指定金额,则返回 `-1` 表明无解。 #### 关键点解析 1. **初始化**:创建长度为 `amount + 1` 的数组并设置初始值为正无穷大 (`float(&#39;inf&#39;)`),表示尚未找到任何有效路径到达这些金额。 2. **边界条件处理**:当金额等于 0 时,不需要任何硬币即可满足需求,因此设定 `dp[0]=0`。 3. **双重循环更新 DP 值**:外层遍历所有可能的目标金额;内层尝试使用当前可选的所有硬币进行匹配,并不断优化已知的最佳结果。 4. **最终判断**:若经过全部迭代后仍未能降低至有限数值,则说明不存在合法解,应输出特殊标记(如这里采用的是 `-1`)。 #### 时间复杂度析 该算法的时间复杂度主要取决于两重嵌套循环结构——即对于每一个金额都要逐一考察所有的硬币选项。假设共有 m 种不同类型的硬币以及最大金额为 n ,那么整体时间开销大致为 O(m × n)---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值