调用detr-resnet-50进行目标检测

from transformers import DetrImageProcessor, DetrForObjectDetection
import torch
from PIL import Image


image = Image.open("1.jpg")
torch.set_default_device("cuda"
如果你想从头开始训练一个模型而不是使用预训练权重,你需要遵循以下几个步骤: 1. **安装必要的库**: 确保已经安装了Detectron2和其对应的RT-DETR模型。如果还没有,可以运行 `pip install detectron2[models]` 来安装。 2. **下载或创建一个空模型配置**: 导入所需的模块,然后创建一个新的模型配置,例如: ```python from detectron2.config import get_cfg cfg = get_cfg() cfg.MODEL.DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu' ``` 如果你是从头开始构建模型,可以选择一个基本的模型配置,如`cfg.MODEL.BACKBONE.NAME = 'resnet50'`。 3. **清空预训练权重**: RT-DETR模型的初始化默认加载预训练权重。为了移除这个行为,设置`cfg.MODEL.WEIGHTS=None` 或者 `cfg.MODEL.RESUME_FROM_NONE=True`。 4. **配置数据集**: 根据你的任务添加适当的dataset configurations,包括数据来源(如COCO)、数据划分(train/val/test)等。 5. **训练循环**: 创建`DefaultTrainer`实例并指定配置文件: ```python trainer = DefaultTrainer(cfg) trainer.resume_or_load(resume=False) # 指定不从预训练权重加载 ``` 然后调用`trainer.train()`进行训练。 6. **保存新权重**: 训练结束后,你可以定期保存模型状态到新的.pth文件: ```python trainer.save("my_new_model.pt") ``` 注意:重新训练通常需要大量的标注数据和计算资源,而且训练时间会比仅使用预训练权重长得多。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

_Focus_

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>