
问答系统 | QA
Jump1024
AGI Never Stop
-
原创 杨尚川的QA系统的基本原理
工作原理: 1、判断问题类型(答案类型)。 2、提取问题关键词。 3、利用问题关键词搜索多种数据源。 4、从搜索结果中根据问题类型(答案类型)提取候选答案。 5、结合问题以及搜索结果对候选答案进行打分。 6、返回得分最高的TopN项候选答案。提取主谓宾:https://github.com/ysc/QuestionAnsweringSystem/blob/master/deep-qa/s2016-03-03 13:40:455202
3
-
原创 text-match模型做问答
有了一个text-match模型,给一对句子打分,给出句义一致程度, 注意: 训练数据是问题和问题,不是问题和答案, 问题和问题用lucene筛出,然后标注,然后训练, 预测的时候,也先用lucene筛出候选10-20对,然后过text-match模型打分再rank, 因为如果是问题和答案放到text-match模型里,来了一个要预测的问题,没法做答案的初筛。...2018-08-21 14:39:22245
0
-
原创 IR(Information Retrieval)初筛算法
https://github.com/faneshion/MatchZoo/issues/72筛出多个候选doc用lucene其中也提到SumBasic算法是在一个已选定为answer的长的doc里挑几个最重要的sentence的好办法2018-05-22 16:30:232633
0
-
原创 初探Freebase和Wikidata的转换
实体对应关系数据在这http://storage.googleapis.com/freebase-public/fb2w.nt.gz 或者http://download.csdn.net/detail/guotong1988/9865825如何用python读Wikidata的bz2文件?https://dumps.wikimedia.org/wikidatawiki/entities/ 参考h2017-07-19 17:42:512147
2
-
原创 读取多轮对话数据dstc的python脚本
import jsonimport osrootdir = '/home/gt/new_data/dstc2_traindev/data'list = os.listdir(rootdir)QA_list = []for i in range(0,len(list)): path = os.path.join(rootdir,list[i]) list2 = os.listdir2017-06-20 10:01:091892
0
-
原创 chatbot 论文收集
Response Selection with Topic Clues for Retrieval-based ChatbotsSequential Matching Network: A New Archtechture for Multi-turn Response Selection in Retrieval-based Chatbotshttps://arxiv.org/find/all/12017-05-08 14:41:261401
0
-
原创 一些问答系统的资料
https://github.com/oxford-cs-deepnlp-2017/lectures/blob/master/Lecture%2011%20-%20Question%20Answering.pdf2017-03-23 16:13:24887
0
-
翻译 End-to-end LSTM-based dialog control optimized with supervised and reinforcement learning
摘要模型的主要部分是一个循环神经网络(一个LSTM),它把粗糙的对话历史直接映射到系统的行动分布,LSTM自动从对话历史推理,也就释放了开发者人工的编辑对话状态,然后开发者可以提供表示商业规则的软件和提供编程API。LSTM可以通过监督学习优化,提供样例对话给LSTM模仿,或者通过增强学习优化,也就是系统提供直接地用户交互。实验表明监督学习和增强学习是互补的,监督学习自己从小量的训练对话中得到一个合2016-07-12 16:50:422305
1
-
翻译 【翻译】End-to-End Reinforcement Learning of Dialogue Agents for Information Access
本文是微软研究软邓力老师的文章,构建了一种从知识图谱中形成response的聊天机器人KB-InfoBot,并且提出了一种端到端的增强学习训练方案。(本文对于构建一个端到端的KB + task-oriented chatbot非常有启发和指导意义)introduction一个典型的goal-oriented(就是比如query一个人演的某年电影)一般由四个部分组成:一,language unders2016-09-19 17:10:581751
2
-
原创 对话系统 问答系统 论文
Neural responding machine for short-text conversation End-to-end LSTM-based dialog control optimized with supervised and reinforcement learning Neural Enquirer : Learning to Query Tables2016-07-05 15:16:202696
2
-
原创 经典论文及其代码收集
RT2016-07-13 10:46:441309
7
-
原创 TrecQA 数据集下载
https://github.com/Kyung-Min/CompareModels_TRECQA/tree/master/datahttps://github.com/castorini/data/tree/master/TrecQA2019-09-19 17:04:54673
0