题目描述
给你二叉树的根节点 root ,返回它节点值的 前序 遍历。
示例 1:
输入:root = [1,null,2,3]
输出:[1,2,3]示例 2:
输入:root = []
输出:[]示例 3:
输入:root = [1]
输出:[1]示例 4:
输入:root = [1,2]
输出:[1,2]示例 5:
输入:root = [1,null,2]
输出:[1,2]提示:
树中节点数目在范围 [0, 100] 内
-100 <= Node.val <= 100进阶:递归算法很简单,你可以通过迭代算法完成吗?
算法分析
代码
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
vector<int> preorderTraversal(TreeNode* root) {
TreeNode* p = root;
TreeNode* q = nullptr;
vector<int> ans;
while(p) {
q = p->left;
if(q) {
while(q->right != nullptr && q->right != p) {
q = q->right;
}
if(q->right == nullptr) {
ans.push_back(p->val);
q->right = p;
p = p->left;
continue;
} else {
q->right = nullptr;
}
} else {
ans.emplace_back(p->val);
}
p = p->right;
}
return ans;
}
};
时间复杂度分析
时间复杂度:O(n),其中 n是二叉树的节点数。没有左子树的节点只被访问一次,有左子树的节点被访问两次。
空间复杂度:O(1)。只操作已经存在的指针(树的空闲指针),因此只需要常数的额外空间。
这篇博客介绍了如何使用迭代算法解决二叉树的前序遍历问题。给定一个二叉树的根节点,算法通过操作空闲指针避免了递归,并在O(n)的时间复杂度和O(1)的空间复杂度下完成遍历。具体实现中,利用两个指针p和q,不断更新它们来遍历每个节点。当遇到没有左子树的节点时,直接访问其值并移动到右子节点;对于有左子树的节点,先将其右指针指向父节点,然后访问其值,最后调整节点的右指针来继续遍历。


395

被折叠的 条评论
为什么被折叠?



