自适应阈值算法(大津阈值法)

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/guoyk1990/article/details/7606032
最大类间方差法是由日本学者大津于1979年提出的,是一种自适应的阈值确定的方法,又叫大津法,简称OTSU。它是按图像的灰度特性,将图像分成背景和目标2部分。背景和目标之间的类间方差越大,说明构成图像的2部分的差别越大,当部分目标错分为背景或部分背景错分为目标都会导致2部分差别变小。因此,使类间方差最大的分割意味着错分概率最小。对于图像I(x,y),前景(即目标)和背景的分割阈值记作T,属于前景的像素点数占整幅图像的比例记为ω0,其平均灰度μ0;背景像素点数占整幅图像的比例为ω1,其平均灰度为μ1。图像的总平均
灰度记为μ,类间方差记为g。假设图像的背景较暗,并且图像的大小为M×N,图像中像素的灰度值小于阈值T的像素个数记作N0,像素灰度大于阈值T的像素个数记作N1,则有:
      ω0=N0/ M×N                                                         (1)
      ω1=N1/ M×N                                                         (2)
      N0+N1=M×N                                                           (3)
      ω0+ω1=1                                                            (4)
      μ=ω0*μ0+ω1*μ1                                                   (5)
      g=ω0(μ0-μ)^2+ω1(μ1-μ)^2                                        (6)


将式(5)代入式(6),得到等价公式:
            g=ω0ω1(μ0-μ1)^2                                                  (7)

采用遍历的方法得到使类间方差最大的阈值T,即为所求。

由于,当图像在254或255灰度值上没有像素点时,求平均灰度时会出现0/0的情况,为避免抛出异常,可在当出现前景像素数为零时,跳出循环。

以下是c++代码(用到OpenCV):

int otsuThreshold(IplImage* img)
{
	
	int T = 0;//阈值
	int height = img->height;
	int width  = img->width;
	int step      = img->widthStep;
	int channels  = img->nChannels;
	uchar* data  = (uchar*)img->imageData;
	double gSum0;//第一类灰度总值
	double gSum1;//第二类灰度总值
	double N0 = 0;//前景像素数
	double N1 = 0;//背景像素数
	double u0 = 0;//前景像素平均灰度
	double u1 = 0;//背景像素平均灰度
	double w0 = 0;//前景像素点数占整幅图像的比例为ω0
	double w1 = 0;//背景像素点数占整幅图像的比例为ω1
	double u = 0;//总平均灰度
	double tempg = -1;//临时类间方差
	double g = -1;//类间方差
	double Histogram[256]={0};// = new double[256];//灰度直方图
	double N = width*height;//总像素数
	for(int i=0;i<height;i++)
	{//计算直方图
		for(int j=0;j<width;j++)
		{
			double temp =data[i*step + j * 3] * 0.114 + data[i*step + j * 3+1] * 0.587 + data[i*step + j * 3+2] * 0.299;
			temp = temp<0? 0:temp;
			temp = temp>255? 255:temp;
			Histogram[(int)temp]++;
		} 
	}
	//计算阈值
	for (int i = 0;i<256;i++)
	{
		gSum0 = 0;
		gSum1 = 0;
		N0 += Histogram[i];			
		N1 = N-N0;
		if(0==N1)break;//当出现前景无像素点时,跳出循环
		w0 = N0/N;
		w1 = 1-w0;
		for (int j = 0;j<=i;j++)
		{
			gSum0 += j*Histogram[j];
		}
		u0 = gSum0/N0;
		for(int k = i+1;k<256;k++)
		{
			gSum1 += k*Histogram[k];
		}
		u1 = gSum1/N1;
		//u = w0*u0 + w1*u1;
		g = w0*w1*(u0-u1)*(u0-u1);
		if (tempg<g)
		{
			tempg = g;
			T = i;
		}
	}
	return T; 
}


展开阅读全文

没有更多推荐了,返回首页