当前搜索:

基于匹配的目标识别

如果要在一幅图像中寻找已知物体,最常用且最简单的方法之一就是匹配。在目标识别的方法中,匹配属于基于决策理论方法的识别。匹配方法可以是最小距离分类器,相关匹配。本文code是基于最小距离分类器,基于相关匹配的与此类似。本文涉及到的知识点如下:1、目标识别.2、基于决策理论方法的识别3、匹配(最小距离...
阅读(605) 评论(0)

基于空间相关的图像模板匹配及MATLAB实现

应用背景:机器的模式识别所要解决的问题,就是用机器代替人去认识图像和找出一幅图像中人们感兴趣的目标物。如何找到目标物即图像的区域呢,这里介绍在空间域使用模板在图像中寻找与模板匹配的区域。基本原理:在空间滤波中,相关是指滤波器模板移过图像并计算每个像素位置的灰度乘积之和的过程。基于相关的图像模板匹配...
阅读(1291) 评论(0)

OpenCV Mat类详解和用法

Mat本质上是由两个数据部分组成的类: (包含信息有矩阵的大小,用于存储的方法,矩阵存储的地址等) 的矩阵头和一个指针,指向包含了像素值的矩阵(可根据选择用于存储的方法采用任何维度存储数据)。矩阵头部的大小是恒定的。然而,矩阵本身的大小因图像的不同而不同,通常是较大的数量级。因此,当你在您的程序中...
阅读(10248) 评论(1)

协方差矩阵和散布矩阵(散度矩阵)的意义

在机器学习模式识别中,经常需要应用到协方差矩阵C和散布矩阵S。如在PCA主成分分析中,需要计算样本的散度矩阵,有的论文是计算协方差矩阵。实质上二者意义差不多,散布矩阵(散度矩阵)前乘以系数1/(n-1)就可以得到协方差矩阵了。在模式识别的教程中,散布矩阵也称为散度矩阵,有的也称为类内离散度矩阵或者...
阅读(1305) 评论(0)

PCA原理分析和意义(二)

原文链接:http://blog.csdn.net/xl890727/article/details/16898315 在进行图像的特征提取的过程中,提取的特征维数太多经常会导致特征匹配时过于复杂,消耗系统资源,不得不采用特征降维的方法。所谓特征降维,即采用一个低纬度的特征来表示高纬度。...
阅读(1168) 评论(0)

PCA原理分析和意义(一)

原文链接:http://blog.codinglabs.org/articles/pca-tutorial.html PCA(Principal Component Analysis)是一种常用的数据分析方法。PCA通过线性变换将原始数据变换为一组各维度线性无关的表示,可用于提取数据的主要特征分...
阅读(1887) 评论(0)

解决Warning: NEWFF used in an obsolete way. See help for NEWFF to update calls to the new argument li

解决Warning: NEWFF used in an obsolete way.  【转载请注明出处】http://blog.csdn.net/guyuealian/article/details/53954005      使用Matlab工具箱创建神经网络时,需要用到newff函数,但若...
阅读(3718) 评论(1)

复旦大学吴立德《数值优化》、《深度学习》和

http://i.youku.com/i/UNjAzMzA4NjQ=/playlists?spm=a2hzp.8253869.0.0 【1】复旦大学吴立德教授讲授的《数值优化》。 使用教材为Nocedal, Jorge, and Stephen Wright. Numerical opti...
阅读(2970) 评论(0)

通俗理解卷积神经网络

通俗理解卷积神经网络(cs231n与5月dl班课程笔记) 原文链接:http://blog.csdn.net/v_july_v/article/details/51812459 1 前言     2012年我在北京组织过8期machine learning读书会,那时“机...
阅读(715) 评论(0)

从傅里叶(Fourier)变换到伽柏(Gabor)变换再到小波(Wavelet)变换

从傅里叶(Fourier)变换到伽柏(Gabor)变换再到小波(Wavelet)变换 本文是边学习边总结和摘抄各参考文献内容而成的,是一篇综述性入门文档,重点在于梳理傅里叶变换到伽柏变换再到小波变换的前因后果,对于一些概念但求多而全,所以可能会有些理解的不准确,后续计划分别再展开学习研究。通过本...
阅读(1591) 评论(0)

Matlab subs函数的用法

Matlab subs函数的用法 matlab中subs()是符号计算函数,详细用法可以在Matlab的Command Windows输入:help subs。subs()函数表示将符号表达式中的某些符号变量替换为指定的新的变量,常用调用方式为: R = subs(S, new) 利用...
阅读(12090) 评论(0)

点在直线的投影坐标 n维向量投影坐标 几何投影坐标

点在直线的投影坐标 n维向量投影坐标 几何投影坐标 一、点在直线的投影坐标     如下图所示,直线l1:y=kx+b,直线外有一点P(x0, y0),问:点P在直线上的投影坐标为多少呢?      求点P的投影坐标,即是求过点P(x0, y0)的直线l2垂直于直
阅读(5311) 评论(0)

协方差矩阵的几何解释

A geometric interpretation of the covariance matrix http://www.visiondummy.com/2014/04/geometric-interpretation-covariance-matrix/ 译文:http://de...
阅读(1042) 评论(0)

张志华教授《机器学习导论》和《统计机器学习》课程讲义

张志华教授《机器学习导论》和《统计机器学习》课程讲义 最近看了上海交大张志华教授的精品课程 《机器学习导论》和《统计机器学习》,觉得讲的很深入,适合学习机器学习和深度学习的研究者深入学习,张教授讲的比较偏向理论,需要一定的数学基础。 至于广大网友最关心的课程讲义和配套教材书籍,...
阅读(10584) 评论(28)

《机器学习导论》和《统计机器学习》学习资料:张志华教授

张志华教授的两门机器学习公开课是很好的机器学习资源。但在上海交大的公开课视频网站上挂出的教学视频顺序有点乱。对于初学者来说,如果没看对顺序的话,会觉得讲得很乱,从而错过这么优质的资源。事实上板书很完整,有电子版讲义可下载。只是讲义上有个别地方有点笔误,但不影响理解。能用黑板直接推导的老师的逻辑和思...
阅读(4574) 评论(11)

最小错误率贝叶斯决策

原文链接:http://blog.csdn.net/angel_yuaner/article/details/47042817  在一般的模式识别问题中,人们的目标往往是尽量减少分类的错误,追求最小的错误率。根据之前的文章,即求解一种决策规则,使得: minP(e)=∫P(e|x)p(...
阅读(440) 评论(0)

C/C++指向指针的指针

我在一篇教程中看到下面这段,它描述指向指针的指针是如何运作的。 引用文章相关段落如下: int i = 5, j = 6, k = 7; int *ip1 = &i, *ip2 = &j;现在我们可以这么写: int **ipp = &ip1; 那么现在...
阅读(325) 评论(0)

解决VS2010复制代码中文乱码的问题

解决VS2010复制代码中文乱码的问题 直接复制VS2010的代码到Word里面去时,中文会出现如下乱码的现象(见下图),一种简单的方法是先把代码复制到记事本,再从记事本复制到Word,但是这样会失去了代码原有的格式,失去高亮色,这不是我们想要的。 从VS2010复制代码到Wo...
阅读(2481) 评论(0)

C/C++中Static和Const的作用

C/C++中Static和Const的作用     【尊重原创,转载请注明出处】http://blog.csdn.net/guyuealian/article/details/51119499 (一)const的作用 : 1.定义常量    (1)const修饰变量,以下两种定义形式在本质上是一...
阅读(466) 评论(0)

JAVA 内存泄露详解(原因、例子及解决)

Java的一个重要特性就是通过垃圾收集器(GC)自动管理内存的回收,而不需要程序员自己来释放内存。理论上Java中所有不会再被利用的对象所占用的内存,都可以被GC回收,但是Java也存在内存泄露,但它的表现与C++不同。 JAVA 中的内存管理     要了解Java中的内...
阅读(1363) 评论(0)
    个人资料
    专栏达人 持之以恒
    等级:
    访问量: 68万+
    积分: 6924
    排名: 4206
    博客专栏
    最新评论