当前搜索:

[置顶] Python3实现批量下载百度搜索图片

Python3实现批量下载百度搜索图
阅读(687) 评论(1)

[置顶] OpenCV android sdk开发实例 OpenCV android NDK实例

OpenCV android sdk开发实例 OpenCV android NDK实例 【尊重原创,转载请注明出处】http://blog.csdn.net/guyuealian/article/details/78113325 在Android应用中调用OpenCV进行图像处理的方法...
阅读(1999) 评论(0)

[置顶] OpenCV图像剪切的扩展和高级用法:任意裁剪,边界扩充

OpenCV图像剪切的扩展和高级用法:任意裁剪,边界扩充 , 利用感兴趣区域ROI和矩形类Rect,在OpenCV中可以很简单的就实现图像裁剪和剪切的功能,但剪切时常常会出现超出图像边界的区域的情况,对于超出图像边界的区域,我们必须进行特殊的处理,以避免出组数组越界的错误,如图1所示的裁剪错误。 ...
阅读(8796) 评论(11)

[置顶] Dlib学习笔记:dlib array2d与 OpenCV Mat互转

在Dlib库中图像存储是使用array2d类型,而在OpenCV是使用Mat类型,Dlib中提供了#include <dlib/opencv.h>,可实现dlib array2d与 OpenCV Mat的互转。其中toMat对象可将dlib的图像转为OpenCV的Mat类型,而cv_i...
阅读(2937) 评论(1)

[置顶] Adaboost算法原理分析和实例+代码(简明易懂)

Adaboost算法原理分析和实例+代码(简明易懂) ,Adaboost算法优点和缺点,Adaboost算法代码,Adaboost基本原理,Adaboost的例子和代码,详细分析Adaboost算法,Adaboost实现过程。 (1)Adaboost提供一种框架,在框架内可以使用各种方法构建...
阅读(20215) 评论(25)

[置顶] 协方差矩阵和散布矩阵(散度矩阵)的意义

协方差矩阵和散布矩阵的意义 在机器学习模式识别中,经常需要应用到协方差矩阵C和散布矩阵S。如在PCA主成分分析中,需要计算样本的散度矩阵,有的论文是计算协方差矩阵。实质上二者意义差不多,散布矩阵(散度矩阵)前乘以系数1/(n-1)就可以得到协方差矩阵了。 在模式识别的教程中,散布...
阅读(6610) 评论(0)

[置顶] PCA原理分析和Matlab实现方法(三)

PCA主成分分析原理分析和Matlab实现方法(三) PCA算法主要用于降维,就是将样本数据从高维空间投影到低维空间中,并尽可能的在低维空间中表示原始数据。PCA的几何意义可简单解释为: 0维-PCA:将所有样本信息都投影到一个点,因此无法反应样本之间的差异;要想用一个点来尽可能的...
阅读(11562) 评论(0)

[置顶] 聚类算法-最大最小距离算法(实例+代码)

最大最小距离算法基本思想 最大最小距离法是模式识别中一种基于试探的类聚算法,它以欧式距离为基础,取尽可能远的对象作为聚类中心。因此可以避免K-means法初值选取时可能出现的聚类种子过于临近的情况,它不仅能智能确定初试聚类种子的个数,而且提高了划分初试数据集的效率。 该算法以欧氏...
阅读(10499) 评论(11)

[置顶] 解决 Successfully created project '' on GitHub, but initial push failed: Could not read from remote re

解决Can't finish GitHub sharing process Successfully created project 'MyApplication25' on GitHub, but initial push failed: Could not ...
阅读(10296) 评论(15)

[置顶] 解决Please choose a writable location using the '-configuration' command line option"

Invalid Configuration Location ,The configuration area at 'C:\Users\Administrator\ApplicationData\XMind\configuration-cathy_win32'cound not be create...
阅读(5225) 评论(1)

[置顶] 解决安装XMind出现Invalid Configuration Location The configuration area at 'C:\Users\Administrator\Applicat

Invalid Configuration Location ,The configuration area at 'C:\Users\Administrator\ApplicationData\XMind\configuration-cathy_win32'cound not be create...
阅读(12182) 评论(8)

神经网络中常用的激活函数

原文地址:http://www.cnblogs.com/rgvb178/p/6055213.html版权声明:本文为博主原创文章,未经博主允许不得转载。激活函数的作用首先,激活函数不是真的要去激活什么。在神经网络中,激活函数的作用是能够给神经网络加入一些非线性因素,使得神经网络可以更好地解决较为复...
阅读(42) 评论(0)

随时更新———个人喜欢的关于模式识别、机器学习、推荐系统、图像特征、深度学习、数值计算、目标跟踪等方面个人主页及博客

原文博客地址:https://blog.csdn.net/zhangping1987/article/details/29554621目标检测、识别、分类、特征点的提取David Lowe:Sift算法的发明者,天才。Rob Hess:sift的源码OpenSift的作者,个人主页上有openSi...
阅读(318) 评论(3)

机器学习中正则化项L1和L2的直观理解

原文地址:https://blog.csdn.net/jinping_shi/article/details/52433975(转载部分公式不能正常显示)正则化(Regularization)机器学习中几乎都可以看到损失函数后面会添加一个额外项,常用的额外项一般有两种,一般英文称作ℓ1ℓ1-nor...
阅读(17) 评论(0)

tensorflow保存模型和加载模型的方法(Python和Android)

tensorflow保存模型和加载模型的方法(Python和Android)一、tensorflow保存模型的几种方法:(1) tf.train.saver()保存模型     使用 tf.train.saver()保存模型,该方法保存模型文件的时候会产生多个文件,会把计算图的结构和图上参数取值分...
阅读(76) 评论(0)

将tensorflow训练好的模型移植到Android (MNIST手写数字识别)

将tensorflow训练好的模型移植到Android (MNIST手写数字识别)【尊重原创,转载请注明出处】https://blog.csdn.net/guyuealian/article/details/79672257    本博客将以最简单的方式,利用TensorFlow实现了MNIST手...
阅读(111) 评论(0)

FFmpeg转OpenCV Mat显示

      FFmpeg一般采用SDL进行显示,如果不追求复杂的界面、交互和多线程功能,当然也可以使用OpenCV的imshow()方法进行显示了,而且实现起来比SDL更简单。方法也很简单,只需要把视频帧的BGR格式的数据(如果是RGB格式,需要转换)转存到OpenCV的Mat矩阵里。OpenCV...
阅读(41) 评论(0)

vs项目中头文件(.h)静态库(.lib)和 动态库(.dll )的路径和配置

 在程序开发中,很多时候需要用到别人开发的工具包,如OpenCV和itk。一般而言,在vs中,很少使用源文件,大部分是使用对类进行声明的头文件(.h)和封装了类的链接库(静态.lib或动态.dll)。如果要使用这些类,需要在文件中包含头文件的名字,如#include “cv.h”。但这个并不够,因...
阅读(44) 评论(0)

FFmpeg学习教程

一、FFmpeg库介绍FFmpeg一共包含8个库:1、avcodec:编解码(最重要的库)。 2、avformat:封装格式处理。 3、avfilter:滤镜特效处理。 4、avdevice:各种设备的输入输出。 5、avutil:工具库(大部分库都需要这个库的支持)。 6、postproc:后加...
阅读(364) 评论(0)

20行代码实现电影评论情感分析

背景情感分析有很多的应用场景,比如做一个电商网站,卖家需要时刻关心用户对于商品的评论是否是正面的。再比如做一个电影的宣传和策划,电影在键盘侠们中的口碑也至关重要。互联网上关于任何一个事件或物品都有可能产生成千上万的文本评论,如何定义每一个文本的情绪是正面或是负面的,是一个很有挑战的事情。挑战体现在...
阅读(99) 评论(0)
    个人资料
    专栏达人 持之以恒
    等级:
    访问量: 67万+
    积分: 6852
    排名: 4272
    博客专栏
    最新评论