目标检测YOLO系列------YOLO简介


    YOLO以及各种变体已经广泛应用于目标检测算法所涉及到的方方面面,为了梳理YOLO系列算法建立YOLO系列专题,按照自己的理解讲解YOLO中的知识点和自己的一些思考。本文是开篇之作,首先简单介绍一下YOLO算。

1、为什么会出现YOLO算法

    目标检测算法发展的相当迅速,尤其是近几年,他的发展历程大体如下:
在这里插入图片描述

    从2012年的AlexNet开始,目标检测算法在深度学习领域开启了狂奔模式,主要分为两种思路:One-Stage与Two-Stage(具体区别见One-Stage与Two-Stage区别)。上图中上面分支为Two-Stage的主要代表,下面分支为One-Stage代表。从本人身边做算法的人群来看,使用YOLO系列的人群远高于RCNN系列。为什么会出现YOLO算法呢?其实原因很简单,即

  • Two-Stage效果确实比较好,但是运行效率太低了,达不到实时的效果;
  • Two-Stage方法训练时间普遍较长;
  • 绝大部分场景并不复杂,目标相对也简单;

2、YOLO算法会逐渐成为目标检测的主流吗

    YOLO算法最突出的就是速度快,当然随着其改进算法的不断涌现,精度也越来越高,但是YOLO算法会成为绝对的主流吗?

    从我的经验来看,YOLO算法的普遍使用是可以肯定的,毕竟当前是一个讲究效率的社会。但是,RCNN系列等Two-Stage算法并不会被开发者放弃,因为Two-Stage有其自身的优势。随着硬件水平的提高,谁能保证Two-Stage算法最终无法做到实时检测呢。项目的不同意味着使用场景、使用限制条件等都不同,自然使用的算法也就不同,算法是由项目决定的!

  • 2
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

gz7seven

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值