2002年张一飞的集训队论文(一类博弈游戏的解答过程)

由感性认识到理性认识
——透析一类搏弈游戏的解答过程

目录
一、 游戏
二、 从简单入手
三、 类比与联想
四、 证明
五、 推广
六、 精华
七、 结论
八、 总结


一、 游戏
游戏A:
甲乙两人面对若干堆石子,其中每一堆石子的数目可以任意确定。例如图1所示的初始局面:共n=3堆,其中第一堆的石子数a1=3,第二堆石子数a2=3,第三堆石子数a3=1。两人轮流按下列规则取走一些石子,游戏的规则如下:
每一步应取走至少一枚石子;
每一步只能从某一堆中取走部分或全部石子;
如果谁无法按规则取子,谁就是输家。
 
游戏B:
甲乙双方事先约定一个数m,并且每次取石子的数目不能超过m个;
其余规则同游戏A。


我们关心的是,对于一个初始局面,究竟是先行者(甲)有必胜策略,还是后行者(乙)有必胜策略。
下面,我们从简单入手,先来研究研究这个游戏的一些性质。


二、 从简单入手 
用一个n元组(a1, a2, …, an),来描述游戏过程中的一个局面。
可以用3元组(3, 3, 1)来描述图1所示的局面。
改变这个n元组中数的顺序,仍然代表同一个局面。
(3, 3, 1)和(1, 3, 3),可以看作是同一个局面。


如果初始局面只有一堆石子,则甲有必胜策略。
甲可以一次把这一堆石子全部取完,这样乙就无石子可取了。
如果初始局面有两堆石子,而且这两堆石子的数目相等,则乙有必胜策略。
因为有两堆石子,所以甲无法一次取完;
如果甲在一堆中取若干石子,乙便在另一堆中取同样数目的石子;
根据对称性,在甲取了石子之后,乙总有石子可取;
石子总数一直在减少,最后必定是甲无石子可取。
对于初始局面(1),甲有必胜策略,而初始局面(3, 3),乙有必胜策略。


局面的加法:(a1, a2, …, an) + (b1, b2, …, bm) = (a1, a2, …, an, b1, b2, …, bm)。
(3) + (3) + (1) = (3, 3) + (1) = (3, 3, 1)。
对于局面A, B, S,若S=A+B,则称局面S可以分解为“子局面”A和B。
局面(3, 3, 1)可以分解为(3, 3)和(1)。


如果初始局面可以分成两个相同的“子局面”,则乙有必胜策略。
设初始局面S=A+A,想象有两个桌子,每个桌子上放一个A局面;
若甲在一个桌子中取石子,则乙在另一个桌子中对称的取石子;
根据对称性,在甲取了石子之后,乙总有石子可取;
石子总数一直在减少,最后必定是甲无石子可取。
初始局面(2, 2, 5, 5, 5, 5, 7, 7),可以分成两个(2, 5, 5, 7),故乙有必胜策略。


对于局面S,若先行者有必胜策略,则称“S胜”。
对于局面S,若后行者有必胜策略,则称“S负”。
若A=(1),B=(3, 3),C=(2, 2, 5, 5, 5, 5, 7, 7),则A胜,B负,C负。
我们所关心的,就是如何判断局面的胜负。


如果局面S胜,则必存在取子的方法S→T,且T负。
如果局面S负,则对于任意取子方法S→T,有T胜。


设初始局面S可以分解成两个子局面A和B(分解理论)。
若A和B一胜一负,则S胜。
不妨设A胜B负;
想象有两个桌子A和B,桌子上分别放着A局面和B局面;
因为A胜,所以甲可以保证取桌子A上的最后一个石子;
与此同时,甲还可以保证在桌子B中走第一步的是乙;
因为B负,所以甲还可以保证取桌子B中的最后一个石子;
综上所述,甲可以保证两个桌子上的最后一个石子都由自己取得。
若A负B负,则S负。
无论甲先从A中取,还是先从B中取,都会变成一胜一负的局面;
因此,乙面临的局面总是“胜”局面,故甲面临的S是“负”局面。
若B负,则S的胜负情况与A的胜负情况相同。
若A胜B胜,则有时S胜,有时S负。


如果S=A+C+C,则S的胜负情况与A相同。
令B=C+C,则S=A+B且B负,故S的胜负情况与A相同。
图1所示的初始局面(3, 3, 1) = (3) + (3) + (1),与局面(1)的胜负情况相同。
图1中所示的初始局面(3, 3, 1)是“胜”局面,甲有必胜策略。


称一个石子也没有的局面为“空局面”。
空局面是“负”局面。


如果局面S中,存在两堆石子,它们的数目相等。用T表示从S中把这两堆石子拿掉之后的局面,则称“S可以简化为T”。
局面(2, 2, 2, 7, 9, 9)可以简化为(2, 2, 2, 7),还可以进一步简化为(2, 7)。


一个局面的胜负情况,与其简化后的局面相同。
三个局面(2, 2, 2, 7, 9, 9)、(2, 2, 2, 7)和(2, 7),胜负情况都相同。


不能简化的局面称为“最简局面”。
局面 (2, 7)是最简局面。


最简局面中不会有两堆相同的石子,故可以用一个集合来表示最简局面。
最简局面(2, 7)可以用集合{2, 7}来表示。


如果只关心局面的胜负,则一个局面可以用一个集合来描述。
图1所示的局面(3, 3, 1),可以用集合{1}来描述。


如果用搜索(搏弈树)的方法来解这个游戏,则采用集合来表示一个局面,比采用多元组来表示一个局面,搜索量将有所减少,但时间复杂度仍然很高。
能不能进一步简化一个局面的表示呢?


三、 类比与联想
二进制加法 ( 本文的“二进制加法”,是指不进位的二进制加法,也可以理解为逻辑里的“异或”操作)
1 + 0 = 1;
0 + 1 = 1;
0 + 0 = 0;
1 + 1 = 0。


二进制的加法 VS 局面的加法
大写字母AB表示局面,小写字母ab表示二进制
若A和B相同,则A+B负;若a和b相等,则a+b=0
若A胜B负,则A+B胜;若a=1且b=0,则a+b=1
若B胜A负,则A+B胜;若b=1且a=0,则a+b=1
若A负B负,则A+B负;若a=0且b=0,则a+b=0
……


如果用二进制1和0,分别表示一个局面的胜或负
局面的加法,与二进制的加法有很多类似之处。
若A胜B胜,则A+B有时胜,有时负;若a=1且b=1,则a+b=0。


二进制数的加法:对二进制数的每一位,都采用二进制的加法。




二进制数的加法 VS 局面的加法
大写字母AB表示局面,小写字母ab表示二进制数
若A和B相同,则A+B负;若a和b相等,则a+b为0
若A胜B负,则A+B胜;若a≠0且b=0,则a+b≠0
若B胜A负,则A+B胜;若b≠0且a=0,则a+b≠0
若A负B负,则A+B负;若a=0且b=0,则a+b=0
若A胜B胜,则A+B有时胜,有时负
若a≠0且b≠0,则有时a+b≠0,有时a+b=0
……


如果用二进制数s来表示一个局面S的胜或负,S胜则s≠0,S负则s=0
局面的加法,与二进制数的加法,性质完全相同。
能否用一个二进制数,来表示一个局面呢? 
用符号#S,表示局面S所对应的二进制数。


如果局面S只有一堆石子,则用这一堆石子数目所对应的二进制数来表示S。
#(5)=5=101。


若局面S=A+B,则#S=#A+#B。
局面(3, 3)=(3)+(3),所以#(3, 3)=#(3)+#(3)=11+11=0。
局面(3, 3, 1)=(3, 3)+(1),所以#(3, 3, 1)=#(3, 3)+#(1)=0+1=1。


函数f:若局面S只有一堆石子,设S={a1},则f(a1)=#S,即f(a1)=#(a1)。
对于游戏A来说,#(5)=101,所以f(5)=101。
对于游戏A来说,f(x)就是x所对应的二进制数。换句话说,f(x)=x。


设局面S=(a1, a2, …, an),即S=(a1)+(a2)+…+(an),则#S=f(a1)+f(a2)+…+f(an)。
#(3, 3, 1)=#((3)+(3)+(1))=#(3)+#(3)+#(1)=f(3)+f(3)+f(1)=11+11+1=1。 


对于局面S,若#S=0,则S负;若#S≠0,则S胜。 


四、 证明

二进制数a, b,若a + b = 0,当且仅当a = b。



二进制数a, b, s,若a + b = s,则a = b + s。


 
二进制数a1+a2+…+an=p≠0,则必存在k,使得ak+p<ak。
因为p≠0,所以p的最高位是1;
设p的最高位是第q位;
至少存在一个k,使得ak的第q位也是1;
ak+p的第q位为0,所以ak+p<ak。



若#S=0,则无论先行者如何取子S→T,都有#T≠0。
先行者只能从某一堆中取若干石子,不妨设他选择的就是第1堆;
设先行者从第1堆中取了x个石子,用T表示取完之后的局面;
设S=(a1, a2, …, an),则T=(a1–x, a2, …, an);
#S=f(a1)+#(a2, …, an)=0,故f(a1)=#(a2, …, an);
#T=f(a1–x)+#(a2, …, an)=f(a1–x)+f(a1);
x>0→f(a1)≠f(a1–x)→f(a1)+f(a1–x)≠0→#T≠0。


若#S≠0,则先行者必然存在一种取子方法S→T,且#T=0。
设S=(a1, a2, …, an),p=#S=f(a1)+f(a2)+…+f(an);
因为p≠0,所以必然存在k,使得f(ak)+p<f(ak),不妨设k=1,f(a1)+p=x;
先行者将第1堆的石子的数目从a1变成x,用T表示这个局面;
p=#S=f(a1)+#(a2, …, an),故#(a2, …, an)=f(a1)+p=x;
#T=f(x)+#(a2, …, an)=f(x)+x=0。



若S是空局面,则#S=0。


若#S=0,则S负;若#S≠0,则S胜。
#(1, 2, 3)=01+10+11=0,故局面(1, 2, 3)负。
#(1, 2, 3, 4)=001+010+011+100=100,故局面(1, 2, 3, 4)胜。


对于游戏A来说,任意的一个初始局面S=(a1, a2, …, an),我们把这里的ai都看成是二进制数。令#S=a1+a2+…+an。若#S≠0,则先行者(甲)有必胜策略;否则#S=0,这时后行者(乙)有必胜策略。
下面把这个结论推广到游戏B。


函数f:f(x)=x mod (m+1);把函数f的值看作是二进制数。
对于任意初始局面S=(a1, a2, …, an),令#S=f(a1)+f(a2)+…+f(an)。
若#S≠0,则先行者(甲)有必胜策略;否则后行者(乙)有必胜策略。
类似游戏A的证明。
游戏B的解法与游戏A十分类似。这是因为两个游戏的规则相当类似。

五、 推广
游戏C:
甲乙两人面对若干排石子,其中每一排石子的数目可以任意确定。例如图2所示的初始局面:共n=3排,其中第一排的石子数a1=7,第二排石子数a2=3,第三排石子数a3=3。两人轮流按下列规则取走一些石子,游戏的规则如下:
每一步必须从某一排中取走两枚石子;
这两枚石子必须是紧紧挨着的;

如果谁无法按规则取子,谁就是输家。



如果甲第一步选择取第一排34这两枚石子,之后无论是甲还是乙,都不能一次取走25这两枚石子。换句话说,如果取了34这两枚石子,等价于将第一排分成了两排,这两排分别有2个和3个石子。
我们只关心,对于一个初始局面,究竟是先行者(甲)有必胜策略,还是后行者(乙)有必胜策略。
游戏C的规则和游戏A并不那么相似。但是,前面所列出的,游戏A的关键性质,游戏C却都具有。比如说,图2所示的初始局面可以用三元组(7, 3, 3)来表示,它的胜负情况与初始局面(7)相同。
游戏A的解答是由它的性质得出来的。因此,我们猜想游戏C是否也能用类似的方法来解。


六、 精华
回忆游戏A的结论,以及它在游戏B上的推广,对于游戏C,我们的想法是
设计一个函数f,把函数f的值看作是二进制数。对于任意一个初始局面S,设S=(a1, a2, …, an),令#S=f(a1)+f(a2)+…+f(an)。若#S≠0,则先行者(甲)有必胜策略;否则#S=0,这时后行者(乙)有必胜策略。
游戏A中,f(x) = x。
游戏B中,f(x) = x mod (m + 1)。
游戏C中,f(x) = ?。


关键就在于如何构造一个满足要求的函数f。


回忆关于游戏A、B的结论的证明过程
函数f是否满足要求,关键在于#S是否满足下面的条件。
若#S=0,则无论先行者如何取子S→T,都有#T≠0。
若#S≠0,则先行者必然存在一种取子方法S→T,且#T=0。


用符号$(x),表示局面(x)的下一步所有可能出现的局面的集合。
在游戏A中,$(3)={(2), (1), (0)}。
在游戏B中,若m=4,则$(9)={(8), (7), (6), (5)},$(2)={(1), (0)}。
在游戏C中,$(7)={(5), (1, 4), (2, 3)}。
定义集合g(x):设$(x)={S1, S2, …, Sk},则g(x)={#S1, #S2, …, #Sk}。
在游戏A中,$(3)={(2), (1), (0)},故g(3)={#(2), #(1), #(0)}={10, 01, 00}。
在游戏B中,若m=4,则g(9)={#(8), #(7), #(6), #(5)},g(2)={#(1), #(0)}。

在游戏C中,g(7)={#(5), #(1, 4), #(2, 3)}。



若#S=0,则无论先行者如何取子S→T,都有#T≠0。
设S=(a1, a2, …, an),由于先行者只能选择一堆石子,不妨设选择了a1;
因为#S=f(a1)+#(a2, …, an)=0,所以f(a1)=#(a2, …, an);
先行者可能将局面(a1)变为局面(b1, …, bm),#(b1, …, bm)属于集合g(a1);
设这时的局面为T,我们有T=(b1, …, bm)+(a2, …, an);
#T=#(b1, …, bm)+#(a2, …, an)=#(b1, …, bm)+f(a1);
如果要求#T≠0,则必然有#(b1, …, bm)≠f(a1);

因此,函数f(a1)的值,不属于集合g(a1)。(充要)



若#S≠0,则先行者必然存在一种取子方法S→T,且#T=0。
设S=(a1, a2, …, an),p=#S=f(a1)+f(a2)+…+f(an);
因为p≠0,所以必然存在k,使得f(ak)+p<f(ak),不妨设k=1,f(a1)+p=x;
因为p=#S=f(a1)+#(a2, …, an),故(a2, …, an)=p+f(a1)=x;
如果先行者把局面(a1)变为局面(b1, …, bm),#(b1, …, bm)属于集合g(a1);
设这时的局面为T,我们有T=(b1, …, bm)+(a2, …, an);
#T=#(b1, …, bm)+#(a2, …, an)=#(b1, …, bm)+x;
如果要使#T=0,相当于要找到(b1, …, bm),使得#(b1, …, bm)等于x;
如果可以保证x属于集合g(a1),则肯定可以找到相应的的(b1, …, bm);
因为x<f(a1),所以,x属于集合{0, 1, …, f(a1)–1};

如果集合g(a1)包含集合{0, 1, …, f(a1)–1},则x一定属于g(a1)。(充分)



函数f满足要求的一个充分条件
f(a1)不属于集合g(a1)。
集合g(a1)包含集合{0, 1, …, f(a1)–1}。
如果g(a1)={0, 1, 2, 5, 7, 8, 9},则f(a1)=3,满足要求。


用大写字母N表示非负整数集,即N={0, 1, 2, …}。
令N为全集,集合G(x)表示集合g(x)的补集。


定义函数f(n):f(n)=min{G(n)},即f(n)等于集合G(n)中的最小数。
设局面S=(a1, a2, …, an),#S=f(a1)+f(a2)+…+f(an),采用二进制数的加法。
若#S=0,则S负;若#S≠0,则S胜。


游戏C的f值:
g(0)={},G(0)={0, 1, …},f(0)=0;
g(1)={},G(1)={0, 1, …},f(1)=0;
g(2)={#(0)}={f(0)}={0},G(2)={1, 2, …},f(2)=1;
g(3)={#(1)}={f(1)}={0},G(2)={1, 2, …},f(3)=1;
g(4)={#(2), #(1, 1)}={f(2), f(1)+f(1)}={1, 0},G(4)={2, 3, …},f(4)=2;
g(5)={#(3), #(1, 2)}={f(3), f(1)+f(2)}={1, 1},G(5)={0, 2, 3, …},f(5)=0;
g(6)={#(4), #(1, 4), #(2, 2)}={2, 1, 0},G(6)={3, 4, …},f(6)=3;
g(7)={#(4), #(1, 4), #(2, 3)}={2, 2, 0},G(7)={1, 3, 4, …},f(7)=1;
图2所示的局面S=(7, 3, 3),有#S=f(7)+f(3)+f(3)=1+1+1=1,故S胜。
游戏C的初始局面S=(3, 4, 6),有#S=1+2+3=01+10+11=0,故S负。


七、 结论
此类搏弈游戏的一般性解法:
用一个n元组(a1, a2, …, an),来描述游戏过程中的一个局面。
用符号#S,表示局面S所对应的二进制数。
用符号$(x),表示局面(x)的下一步所有可能出现的局面的集合。
定义集合g(x):设$(x)={S1, S2, …, Sk},则g(x)={#S1, #S2, …, #Sk}。
令非负整数集为全集,集合G(x)表示集合g(x)的补集。
定义函数f(n):f(n)=min{G(n)},即f(n)等于集合G(n)中的最小数。
设局面S=(a1, a2, …, an),#S=f(a1)+f(a2)+…+f(an),采用二进制数的加法。
若#S≠0,则先行者有必胜策略;若#S=0,则后行者有必胜策略。


适用范围和限制条件:
甲乙两人取石子游戏及其类似的游戏;
每一步只能对某一堆石子进行操作;
每一步操作的限制,只与这堆石子的数目或一些常数有关;
操作在有限步内终止,并不会出现循环;
谁无法继续操作,谁就是输家。


游戏D(POI’2000,Stripes):
一排石子有L个,甲乙两人轮流从中取“紧紧挨着的”A或B或C枚石子。谁不能取了,谁就是输家。已知A, B, C, L,问甲乙二人谁有必胜策略。
有了前面的结论,这个游戏就难不倒我们了。


八、 总结


1. 从算法优化的角度
取石子游戏属于一类典型的搏弈游戏。穷举所有的局面,理论上可以求得最优策略。但穷举的时空复杂度太高,本文所提出的解法,有效的控制了算法的时空复杂度,可以看作是对穷举法的一个优化。
优化算法的过程,可以看作是在优化局面的表示。首先,我们用一个n元组表示一个局面,这是很直观很容易想到的。因为我们只关心局面的胜负,于是得到了第一个性质:这个n元组是无序的。进一步分析发现,n元组中如果出现两个相同的数字,则把它们消去,不影响局面的胜负。于是,我们改用集合来表示一个局面。最后,通过与二进制数的对比,又简化到用一个数来表示一个局面。
优化局面的表示,使得搜索量大大减少。那么,减少的搜索量都到哪里去了呢?举个例子,对于游戏A中的5个局面:(3, 3, 1), (1, 3, 3), (5, 5, 1), (2, 3):
a. 采用n元组:这5个局面互不相同;
b. 采用无序n元组:局面(3, 3, 1)和(1, 3, 3)相同;
c. 采用集合:局面(3, 3, 1), (1, 3, 3), (5, 5, 1)都相同,可以用集合{1}表示;
d. 采用二进制数:4个局面所对应的二进制数都是1,故都相同。
算法的优化,本质上是避免穷举相同的局面,即避免重复搜索。而优化的关键,就在于“相同局面”的定义。
“相同局面”的定义,必须能够反映游戏的性质。我们没有简单的按照局面的胜负,来对局面归类,就是这个原因。


2. 从算法构造的角度
人们认识事物的过程中,开始只是看到了各个事物的现象。这就是认识的感性阶段。在这个阶段中,还不能作出合乎逻辑的结论。 随着研究的深入,这些感觉和印象的东西反复了多次,于是在人们的脑子里生起了一个认识过程中的突变,最后产生出合乎逻辑的结论。这就是认识的理性阶段。
人们认识事物的过程,就是由感性认识上升到理性认识的过程。具体到解这类游戏,就是要从简单入手。当我们遇到了一个复杂的问题,或许人人都知道从简单入手,但却并不是每个人都能从中得到一般性的规律。那么,我们究竟是如何由浅入深的呢?
两堆数目相等的石子——这是个很简单的局面。我们就由此入手,将一堆石子与一个子局面相类比,并得出了两个子局面相等时的结论。在此基础上,我们研究了局面的胜负和其子局面的关系,并得出结论:可以用集合来描述一个局面。但我们并没有停留在这一步,而是将局面的分解与二进制数的加法相类比,从而发现了局面与二进制数之间的关系。我们称这个过程为“由此及彼”。
通过分析“用集合来表示一个局面”的结论,我发现这实质上是简化了局面的表示,从而联想到能否进一步化简,比如说用一个数来表示。在解游戏C时,我们并不在意它与游戏A的规则有多大的区别,而是注意到它与游戏A有着相似的性质,从而想到用类似的方法解游戏C。我们称这个过程为“由表及里”。
在解游戏A和B的过程中,我们积累了很多经验。但在解游戏C时,我们却仅仅提到了解游戏A和B的精华:构造一个函数f。这就是“去粗取精”。
将局面与二进制数相类比,我们先试着把局面的胜负直接与二进制的1和0相类比。发现不妥后,再将其改为与二进制数来类比。这一步叫“去伪存真”。
“由此及彼、由表及里、去粗取精、去伪存真” ,这就是由感性认识上升到理性认识的关键。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值