一个菜菜的蜕变之路?

时间是个常数,也是个变数

图论学习心得

开始接触图论,小小的好奇伴随着一堆的疑问- -。图是一种数据结构。
它的形式定义为Graph=(V,E)
其中,V代表顶点集合,E代表边的集合。
(1)有向图:每条边都是有方向的图。有向边也称为弧,边的起始点称为弧尾,终点称为弧头。
(2)无向图:每条边都是没有方向的图。
(3)有向完全图:具有n(n-1)条弧的有向图。
(4)无向完全图:具有n(n-1)/2条弧的无向图。
(5)权:有向图的边或弧具有与它相关的数,这种与图的边或弧相关的数叫做权。这些权可以表示从一个顶点到另一个顶点的距离或耗费。这种带权的图通常称为网。
(6)子图:假设有两个图G=(V,E)和G’=(V’,E’),如果V’ V且E’ E,则称G’为G的子图。
(7)邻接点:对于无向图G=(V,E),如果边(V1,V2)属于E,则称顶点V1和V2互为邻接点,或者说,V1和V2是相关联的。
(8)度:顶点V的度是和V相关联的边的数目。在有向图中,以顶点V为头的弧的数目称为V的入度;以顶点V为尾的弧的数目称为V的出度。
定理一:无向图中所有顶点的度之和等于边数的2倍,有向图中的所有顶点的入度之和等于所有顶点的出度之和.
定理二:任意一个无向图一定有偶数个(或0个奇点).
(9)路径:无向图G=(V,E)中从顶点V到顶点V’的一个顶点序列(v1,v2,…,vn),其中(vi,vi+1)∈E。第一个顶点和最后一个顶点相同的路径称为回路或环。序列中顶点不重复出现的路径称为简单路径。除了第一个顶点和最后一个顶点外,其余顶点不重复出现的回路,称为简单回路或简单环。
(10)连通:在无向图G中,如果从顶点v到顶点v’有路径,则称v 和v’是连通的。如果对于图中任意两个顶点vi,vj,vi和vj都是连通的,则称G是连通图。所谓连通分量,指的是无向图中的极大连通子图。
(11)强连通图:在有向图G中,如果对于每一对顶点都存在路径,则称G是强连通图。有向图中的极大强连通子图称作有向图的强连通分量。
(12)在一个有向图或无向图中,若存在一个顶点W,它与其它顶点都有是相连通的,则称之为有根图,顶点W即为它的根。

当然,我们暂时只是接触了前几个,例如克鲁斯卡尔,最小生成树等,不过有时候有点迷雾(疑问)= =,才知道以前自己学的也不是特别的多,要争取完全掌握图论知识,这是比较关键的一个内容,与后面的并查集等有一种递进的关系。
加油!!!!!!

阅读更多
版权声明:欢迎借鉴,谢绝抄搬。 https://blog.csdn.net/Gx_Man_VIP/article/details/53490313
想对作者说点什么? 我来说一句

图论理论总结

2018年06月10日 170KB 下载

学习图论的预备知识

2012年11月03日 1.73MB 下载

图论经典教材学图论必看

2009年02月10日 18.63MB 下载

实对称矩阵特征值的图论意义

2010年11月29日 49KB 下载

没有更多推荐了,返回首页

加入CSDN,享受更精准的内容推荐,与500万程序员共同成长!
关闭
关闭