一个菜菜的蜕变之路?

时间是个常数,也是个变数

算法学习链接+学习小结

序言:

博主是个蒟蒻…各类链接跟归纳,
如果有什么问题,可以在留言区询问,
勿喷哦,%%%dalao

【———————————】

0.csdn数学符号:

传送门

【———————————】
1.树链剖分:

传送门1

传送门2

【———————————】
2.组合数各类性质,定理:

传送门1

【———————————】
3.位运算:

(1)取出整数N在二进制表示下的第K位:(N>>K) & 1
(2)取出整数N在二进制表示下的第0~K-1位(后K位):N &((1<<K)-1)
(3)把整数N在二进制表示下的第K位取反:N xor (1<<K)
(4)对整数N在二进制表示下的第K位赋值1:N | (1<<K)
(5)对整数N在二进制表示下的第K位赋值0:N & (~(1<<K))

【———————————】
4.树状数组:

传送门1

【———————————】
5.欧拉函数:

传送门1

传送门2

【———————————】
6.FFT:

传送门1

【———————————】
7.欧几里德算法:
a,b1a,bN,b0
gcd(a,b) = gcd(b,a mod b)
证明:
① 当ab,则,
gcd(b,a mod b) = gcd(b,a) = gcd(a,b)
② 当ab,则,
a=qb+r,显然r=a mod b
对于a,b的任意一个公约数d,
显然可得出,
d | ad | b
因为 d | b,所以可得d | qb

因为d | qbd | a
所以可得 d | (aqb)
d | r
d | (a mod b)
所以证出,
a,b的公约数集合,与b,a mod b的公约数集合是相同的
因此,我们可以知道他们的最大公约数相同,
gcd(a,b) = gcd(b,a mod b)
【———————————】
8.拓展欧几里德算法:
贝祖定理:
a,bx,y,ax+by=gcd(a,b)
证明:
①当b=0时,显然有一对整数解x = 1,y = 0,使其满足
a1+00=gcd(a,0)=a
ps:任意正整数x,gcd(x,0)=gcd(0,x)=x
②当b>0时,
因为gcd(a,b)=gcd(b,a mod b) (在第7点时已证
所以当存在一对整数解x,y
满足
bx+(a mod b)y= gcd(b,a mod b)
由于
bx+(a mod b)y=
bx+(aba/b)y=
ayb(x+a/by)=
ay+b(xa/by)

此时我们可以令,
x=y
y=xa/by
则显然能得到,
ax+by=gcd(a,b)
所以我们可以在求解gcd的过程中运用数学归纳法,
可以知道贝祖定理成立。

【———————————】
9.高斯消元:

传送门1

【———————————】
10.莫比乌斯反演:

传送门1

【———————————】

阅读更多
版权声明:欢迎借鉴,谢绝抄搬。 https://blog.csdn.net/Gx_Man_VIP/article/details/79940779
个人分类: 心得/总结/知识点
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

加入CSDN,享受更精准的内容推荐,与500万程序员共同成长!
关闭
关闭