系统吞吐量

《系统吞吐量》

 

很多情况下,笔者经常听见许多开发人员在压力测试中经常提及吞吐量,但经过实际沟通来看,其实大部分开发人员并不能够准确的理解和定位系统吞吐量或者评估系统吞吐量。

简单来说,吞吐量指的就是系统在一个指定的时间范围能,能够处理的实际请求数量,比如系统以秒为单位,每一秒钟就近可以处理多少用户请求,这个就是吞吐量。那么吞吐量跟请求是否相关呢?吞吐量与请求保持着密不可分的关系,从严格意义上来说,请求到了服务端后,如果一个请求对CPU、内存等物理资源消耗越高,且对数据库访问操作、IO读写操作、外部系统对接访问操作、节点通信等阶段话费的时间越长,也就意味着执行一条请求的时间越长,相对的,系统的吞吐量必然越低,这个是相对的。

系统吞吐量几个重要参数:QPSTPS)、并发数、响应时间

QPSTPS每秒钟请求/事务 数量;

并发数:系统同时处理的请求/事务数;

响应时间:执行一个请求的平均耗时;

那么它们之间的关系就是:

QPSTPS=并发数/平均响应时间

 

一个系统吞吐量通常由QPSTPS)、并发数两个因素决定,每套系统这两个值都有一个相对极限值,在应用场景访问压力下,只要某一项达到系统最高值,系统的吞吐量就上不去了,如果压力继续增大,系统的吞吐量反而会下降,原因是系统超负荷工作,上下文切换、内存等等其它消耗导致系统性能下降。

### 批处理系统吞吐量及其提高方法 #### 吞吐量的概念 在计算机科学中,批处理系统吞吐量是指单位时间内可以完成的任务数量。更高的吞吐量意味着系统可以在更短的时间内处理更多的数据或执行更多任务。 #### 提高批处理系统吞吐量的方法 ##### 1. 数据批量处理 通过将多个独立的操作合并成一批来减少每次操作的开销。例如,在Apache Flume中,可以通过Batching方式增加agent的吞吐量[^4]。这种方式减少了每条记录单独传输带来的额外负担,从而提高了整体效率。 ##### 2. 并发与并行处理 采用多线程或多进程模型以及异步I/O技术能够显著加快数据处理的速度。合理配置线程池大小、使用非阻塞IO模式等都是有效的手段之一。这不仅适用于传统的应用程序开发场景下,也适合于像Flume这样的分布式流处理框架中的组件间通信过程[^1]。 ##### 3. 缓存机制的应用 引入合适的缓存层可以帮助减轻数据库或其他持久化存储的压力,进而间接提升了整个系统的吞吐能力。比如在线程内部署invokeCache用于临时保存最近使用的对象;或者利用分布式缓存如Tair来进行热点数据快速检索。 ##### 4. 资源管理优化 评估现有硬件条件下的最佳实践指南(如针对特定应用调整BIOS设置),确保操作系统和中间件软件处于最优状态运行。对于高性能网络包转发需求来说,遵循DPDK官方推荐的做法可极大改善底层基础设施的表现[^3]。 ##### 5. 算法与架构改进 重新审视现有的算法实现是否存在冗余计算环节,并尝试重构使之更加简洁高效。同时也要注意检查是否有更好的替代方案可用——有时候更换一个更适合当前工作负载特性的库/工具就能带来意想不到的效果。 ```python def batch_process(data_list, batch_size=100): """模拟简单的批处理函数""" result = [] for i in range(0, len(data_list), batch_size): chunk = data_list[i:i + batch_size] processed_chunk = process(chunk) # 假设process是一个已有的处理函数 result.extend(processed_chunk) return result # 使用示例 data_points = list(range(1000)) batch_result = batch_process(data_points) print(f"Processed {len(batch_result)} items.") ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值