贝塞尔曲线

<script type="text/javascript"> </script> <script class="blogstory"> </script> [手动搬家自网易博客 原发表日期: 2009-08-08 23:14]

 

0、点P[1]..P[n-1]为控制点
1、贝塞尔曲线起于点P[0],终于点P[n]
2、贝赛尔曲线是直线的充要条件为控制点共线
3、直线(P[0], P[1]) 及 (P[n-1], P[n]) 与曲线相切 (?)
4、任意连续子曲线仍是贝赛尔曲线
5、一些简单曲线(如圆)无法用有限个控制点的贝赛尔曲线描述
6、贝赛尔曲线以某点为中心缩放后可能无法用有限个控制点的贝赛尔曲线描述 (?)


B(t) = sum(C(n, i) * (1 - t)^(n - i) * t^i * vector(O->P[i]), i, 0, n) (0 <= t <= 1)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值