首先这是一套关于elasticsearch7.0使用与探索的文章,主要面向对elasticsearch有一定了解的用户;和其它技术系列文章一样,在开始本系列探索之前,我们需要对ES(elasticsearch)进行下整理了解。
一、介绍:
一句话概述:
es是基于lucene分片(shard)存储的近实时的分布式搜索引擎。
名词解释:
Lucene:使用java语言编写的存储与查询框架,通过组织文档与文本关系信息进行倒排索引,内部形成多个segment段进行存储,是es的核心组件,但不具备分布式能力。
segment:Lucene内部最小的存储单元,也是es的最小存储单元,多个小segment可合为一个较大的segment,并但不能拆分。
shard:es为解决海量数据的处理能力,在Lucene之上设计了分片的概念,每个分片存储部分数据,分片可以设置多个副本,通过内部routing算法将数据路由到各个分片上,以支持分布式存储与查询。
近实时:严格讲es并不是索引即可见的数据库,首先数据会被写入主分片所在机器的内存中,再触发flush操作,形成一个新的segment数据段,只有flush到磁盘的数据才会被异步拉取到其它副本节点,如果本次搜索命中副本节点且数据没有同步的话,那么是不会被检索到的;es默认flush间隔是1s,也可通过修改refresh_interval参数来调整间隔(为提升性能和体验,一版设置30s-60s)。
分布式:es天生支持分布式,配置与使用上与单机版基本没什么区别,可快速扩张至上千台集群规模、支持PB级数据检索;通过内部路由算法将数据储存到不同节点的分片上;当用户发起一次查询时,首先会在各个分片上完成提前批处理(这个会在之后章节详细讲解),处理后的数据汇总到请求节点再做一次全局处理后返回。
当然,也有人将es定义为开箱即用的NoSql文档数据库,这么说也没错,es借助其平滑扩展的能力实现了nosql数据库对海量数据增删改查的能力,目前市面上基于文档存储的nosql数据库有Mongo

最低0.47元/天 解锁文章
3985

被折叠的 条评论
为什么被折叠?



