矩阵重塑(其一)
题目描述
矩阵的重塑操作可以具体定义为以下步骤:
设原矩阵为 MM,其维度为 n×mn×m,即有 nn 行和 mm 列。新矩阵为 M′M′,其维度为 p×qp×q。重塑操作要满足 n×m=p×qn×m=p×q,这保证了元素的总数不变。
-
线性化原矩阵:按照行优先的顺序,将原矩阵 MM 的元素转换成一个长度为 n×mn×m 的一维数组 AA。这意味着你先读取 MM 的第 00 行元素,然后是第 11 行,依此类推,直到最后一行。
-
填充新矩阵:使用一维数组 AA 中的元素按照行优先的顺序填充新矩阵 M′M′。首先填充 M′M′ 的第 00 行,直到该行有 qq 个元素,然后继续填充第 11 行,直到所有 pp 行都被填满。
给定原矩阵中的一个元素的位置 (i,j)(i,j)(0≤i<n0≤i<n 且 0≤j<m0≤j<m),我们可以找到这个元素在被线性化后的一维数组 AA 中的位置 kk(0≤k<n×m0≤k<n×m),然后确定它在新矩阵 M′M′ 中的位置 (i′,j′)(i′,j′)(0≤i′<p0≤i′<p 且 0≤j<q0≤j<q)。它们之间满足如下数学关系:i×m+j=k=i′×q+j′i×m+j=k=i′×q+j′
给定 n×mn×m 的矩阵 MM 和目标形状 pp、qq,试将 MM 重塑为 p×qp×q 的矩阵 M′M′。
输入格式
从标准输入读入数据。

最低0.47元/天 解锁文章

被折叠的 条评论
为什么被折叠?



