(翻译)edge slam

边缘SLAM:基于边缘点的单目视觉SLAM

摘要:

        近年来,视觉SLAM取得了很大的发展,但是在低纹理环境中依然有很大的挑战.在低纹理环境中,由于缺乏充足的特征点,基于特征点的SLAM无法可靠的估计环境结构和位姿.此外,当3d-2d对应特征点的数量不足以使用BA进行增量式相机位姿估计时,现有的视觉SLAM产生部分重建.这篇文章提出了Edge SLAM,它是一种基于特征点的单目视觉SLAM,可以在一定程度上解决上述问题.我们提出的edge SLAM从图像中检测边缘点,通过光流法追踪对应的点,使用三视图的几何关系进一步细化这些点的对应关系.由于对边缘点的跟踪,我们使用一种鲁棒的方法来初始化两个视图进行BA,我们提出的SLAM也确定了在已经完成的重建中估计新相机不可靠的潜在情况,我们采用了一种新的方法,使用局部优化技术可靠地估计新相机.我们采用最流行的开源数据集对所提出的SLAM进行了大量的评估,并且和最先进的SLAM算法进行了比较.实验结果表明与现有最新的SLAM算法相比,在纹理特征充足和缺乏的环境中Edge SLAM都很鲁棒并且结果可靠.

1.introduction

​         机器人的自主导航要求鲁棒地估计机器人的位姿和3d场景结构.近年来,研究者提出了大量的基于相机的SLAM算法.对于相机(机器人)的位姿和场景结构估计,这些视觉SLAM算法要求图像间点的对应关系.基于特征点的视觉SLAM试着通过使用sift,surf或者orb特征找到图像之间点的对应关系.使用这些特征点,通过增量式BA最小化重投影误差得到相机位姿和环境结构.这些SLAM依赖于所提取到的特征点,所以当提取到的特征点数量很少或者提取错误时,特别是当环境中纹理信息很少时(如图1所示)这些方法就会失败.因此,当3d-2d对应关系由于特征点对应关系不足或者BA三维点不足而减少时,这些SLAM算法经常会产生局部重建并且停止追踪.与基于特征点的SLAM相反,直接法通过最小化光度误差来寻找这些点,并且优化相机位姿.虽然这些SLAM方法与特征点的提取无关,但是当环境中光照和视角改变得到错误的光度误差估计时会导致错误的相机位姿估计.甚至在缺乏良好的纹理环境中也不会得到令人满意的估计结果.

​         这篇文章中,我们使用了基于特征点的方法检测图像中可靠的边缘,并且使用鲁棒的双向光流追踪边缘上的点. 这样的追踪方式将产生很强的点对应关系,并且使用三视图几何方法进一步细化. 使用这些特征对应关系和图像之间的极线几何我们选择关键帧进行结构估计所要求的两视图初始化.为了更好的初始化,在一个图像序列的许多关键帧中,我们提出并使用了一个新的两视图选择方法选择一对特定的关键帧.我们给出了所提出的初始化方法与流行方法的比较结果,很清晰地展示了我们方法的有效性.然后我们使用增量式BA估计新的关键帧和3d结构.与其他基于特征点的方法一样,如果在添加新相机期间3d-2d的点对应关系是病态的,那么我们采用一种新的相机追踪恢复方法来持续追踪相机.如果这种恢复方法没有得到一个可靠的相机估计,表示追踪丢失,然后试着进行重定位.同样的在每一次位姿估计时增量式的位姿估计累计误差会随着时间的推移造成相机位姿漂移,.Edge slam 使用图像中边缘的结构特性计算可靠的点对应关系,在局部BA进行3d重建时使用.一旦估计了一定数量的相机,我们就会优化全局重建.这个全局BA 将会纠正重建时产生的漂移.随后,回环检测将进一步优化相机位姿纠正漂移.我们的Edge slam在闭合一个回环时使用了图像中边缘结构的特性.我们提出的SLAM算法在纹理充足和缺乏纹理的环境中都是鲁棒且可靠的,如图1所示.我们所提出的SLAM的完整的流程如图2所示.这篇文章的贡献如下:

①在建立对应关系和回环检测中我们使用了边的结构特性

②我们通过地图的几何连续性校验地图重建的质量,从而提出了一个鲁棒的自动初始化流程

③当3d-2d对应关系不充足时位姿估计结果将会不可靠,针对这种情况我们提出了一种新的相机追踪恢复方法

我们这篇文章的组织结构如下.在第二部分我们回顾了相关工作,第三部分我们描述了edge slam的整个流程并且评估了我们的贡献.最后,在第四部分,我们展示了

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值