Cym02
码龄6年
关注
提问 私信
  • 博客:184,558
    社区:672
    问答:307
    185,537
    总访问量
  • 107
    原创
  • 1,944,298
    排名
  • 29
    粉丝
  • 0
    铁粉

个人简介:才疏学浅 欢迎大家一起沟通,讨论

IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:浙江省
  • 加入CSDN时间: 2019-07-02
博客简介:

gym02的博客

查看详细资料
个人成就
  • 获得101次点赞
  • 内容获得55次评论
  • 获得279次收藏
  • 代码片获得733次分享
创作历程
  • 3篇
    2023年
  • 12篇
    2022年
  • 24篇
    2021年
  • 69篇
    2020年
成就勋章
TA的专栏
  • Java
    23篇
  • Scala
    4篇
  • Flink
    9篇
  • 报错
    4篇
  • 拾遗
    2篇
  • Linux
    2篇
  • Kafka
    8篇
  • Flume
    4篇
  • IDEA
    1篇
  • Spark
    8篇
  • 报表软件
    3篇
  • Hbase
    2篇
  • Redis
    1篇
  • 机器学习
    1篇
  • 建模
    2篇
  • Kettle
    4篇
  • Eclipse
    1篇
  • HDFS
    3篇
  • MySQL
    4篇
  • HuaJiao
    1篇
  • Clickhouse
    1篇
  • Python
    1篇
  • Centos
    1篇
  • Hive
    2篇
  • Zookeeper
    1篇
兴趣领域 设置
  • Java
    springjava-rabbitmq
  • 数据结构与算法
    算法数据结构
  • 大数据
    sqlmysqlhbasehadoophivezookeepersparkflumekafkaflinksqlserverhdfsodpsetl数据库架构clickhouse
  • 后端
    nginxscala分布式中间件
  • 人工智能
    机器学习
  • 云平台
    阿里云华为云
  • 服务器
    linux
创作活动更多

超级创作者激励计划

万元现金补贴,高额收益分成,专属VIP内容创作者流量扶持,等你加入!

去参加
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

FineReport通过控件实现条件查询(下拉框)

新增数据集作为参数框的数据字典,在后面参数框数据集中引用前面的参数作过滤。
原创
发布博客 2023.06.14 ·
4759 阅读 ·
5 点赞 ·
0 评论 ·
6 收藏

FineReport(帆软)实现分页查询

页面默认展示大小不合适,需要调整 点击模板,选择页面设置进行自定义调整。A3为数据开始展示的那一行,30表示每30条数据为一页。条件属性内容:&A3 % 30 = 0。
原创
发布博客 2023.06.14 ·
3514 阅读 ·
1 点赞 ·
0 评论 ·
4 收藏

FineReport 连接mysql报错 当前驱动加载路径...

原因为帆软自带的jar包与当前使用的mysql(8.0)版本不一致,需要去官网下载对应连接的jar包。下载后在帆软对应路径替换掉jar包即可。
原创
发布博客 2023.06.12 ·
4100 阅读 ·
1 点赞 ·
0 评论 ·
4 收藏

关于#flink代码#的问题,如何解决?

答:

是文件路径问题,我太不细心了

回答问题 2023.03.07

关于#flink代码#的问题,如何解决?

发布问题 2023.03.07 ·
4 回答

SparkStreaming与Flink的区别 (面试层面~)

对于 Spark Streaming 任务,我们可以设置 checkpoint,然后假如发生故障并重启,我们可以从上次 checkpoint 之处恢复,但是这个行为只能使得数据不丢失,可能会重复处理,不能做到恰好一次处理语义。事件驱动的应用程序是一种状态应用程序,它会从一个或者多个流中注入事件,通过触发计算更新状态,或外部动作对注入的事件作出反应。Spark Streaming 是微批处理,运行的时候需要指定批处理的时间,每次运行 job 时处理一个批次的数据。
原创
发布博客 2022.11.24 ·
789 阅读 ·
0 点赞 ·
1 评论 ·
0 收藏

SparkStreaming 消费Kafka数据的两种方式(Receiver,Direct)~

而在Direct方式中,Kafka中的partition与RDD中的partition是一一对应的并行读取Kafka数据,这种映射关系也更利于理解和优化。在Receiver的方式中,使用的是Kafka的高阶API接口从Zookeeper中获取offset值,这也是传统的从Kafka中读取数据的方式,但由于。的最新的offset,从而定义每个batch的offset的范围。这种新的不基于Receiver的直接方式,是在Spark 1.3中引入的,从而能够确保更加健壮的机制。使用 kafka 的简单 api,
原创
发布博客 2022.11.23 ·
914 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

Spring装配Bean的三种方式(XML、JavaConfig、Autowired)

Spring会拦截所有对@Bean注解的方法的调用,确保直接返回这个方法创建的bean,而不是让其执行实际调用。常用于构造器、setter方法,当Spring创建它们所在对象的bean时,会传入一个相应参数类型的bean,即自动满足所创建bean 的(对另一个bean的)依赖。——告诉Spring这个方法返回一个对象,该对象要注册为Spring应用上下文中的bean,bean的默认ID和这个方法名一致,也可以用name属性自定义啦。自动装配机制会考虑到容器中所有的bean,不管它是在。
原创
发布博客 2022.11.22 ·
1329 阅读 ·
1 点赞 ·
0 评论 ·
1 收藏

Hbase的rowkey设计原则与实现方式~

其设计时,要考虑把重要的信息放左边,不重要的信息放到右边,可以提高查询数据的速度。这样,最重要的提高索引速度的就是设计合适的rowkey。缺点:对于单个信息字段,或者无论怎么调整都会遇到region热点的rowkey是解决不了的。有效避免了热点问题;加盐:在rowkey前面加一个冗余信息,这样可以把数据分散到不同的region中。字段交换,提升权重:如果rowkey中含有几个信息字段,可以调整信息字段的顺序。不能得到有效利用,缓存不能存放太多的信息,造成检索效率的降低。的是大多以升序的形式排列,唯一的是。
原创
发布博客 2022.11.22 ·
508 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

redis过期key的清理/删除策略

因为删除操作会占用cpu的时间,如果刚好碰上了cpu很忙的时候,比如正在做交集或排序等计算的时候,就会给cpu造成额外的压力。惰性删除是指,某个键值过期后,此键值不会马上被删除,而是等到下次被使用的时候,才会被检查到过期,此时才能得到删除。从上面分析来看,立即删除会短时间内占用大量cpu,惰性删除会在一段时间内浪费内存,所以定时删除是一个折中的办法。定时删除是:每隔一段时间执行一次删除操作,并通过限制删除操作执行的时长和频率,来减少删除操作对cpu的影响。所以惰性删除的缺点很明显:浪费内存。
原创
发布博客 2022.11.21 ·
2156 阅读 ·
1 点赞 ·
0 评论 ·
8 收藏

Hbase过滤器详解与代码实现~

基础API中的查询操作在面对大量数据的时候是非常苍白的,这里Hbase提供了高级的查询方法:Filter。Filter可以根据簇、列、版本等更多的条件来对数据进行过滤,基于Hbase本身提供的三维有序(),这些Filter可以高效的完成查询过滤的任务。),代表具体的比较逻辑,如果可以提高字节级的比较、字符串级的比较等。有了这两个参数,我们就可以清晰的定义筛选的条件,过滤数据。要完成一个过滤的操作,至少需要两个参数。)的过滤器,这样也可以降低网络传输的压力。另外一个就是具体的比较器(
原创
发布博客 2022.11.18 ·
388 阅读 ·
1 点赞 ·
0 评论 ·
2 收藏

File类对文件的目录、基本操作、递归、遍历(超详细整理~)

【代码】Java.io.File类对文件的目录、基本操作、递归、遍历(超详细整理~)
原创
发布博客 2022.11.17 ·
362 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

冷启动问题分析与解决办法

在缺乏有价值数据的时候,如何有效地满足业务需求的问题,就是“冷启动问题”。为了沟通方便,下面统一从推荐系统的角度来讲“冷启动问题”,其他业务场景同理。冷启动问题是机器学习系统中十分常见、无法回避的问题,因为任何机器学习系统都要经历从无到有的过程。试想,你作为一个新用户,在没有用户数据的情况下,淘宝如何给你个性化推荐商品,抖音如何给你个性化推荐视频呢?用户冷启动:新用户注册后,没有历史行为数据。物品冷启动:新物品上架后,没有用户对该物品的交互数据。
原创
发布博客 2022.11.17 ·
4447 阅读 ·
1 点赞 ·
0 评论 ·
21 收藏

Kettle实现:MongoDB与MySQL数据互传

上面的复选框选择是否输入json格式,这时不选。选择 ”bigdata-mongodb ouput"组件。在kettle中,mongodb input组件。点击get fileds,获取字段对应关系。二、mysql数据迁移到mongodb。输入数据数据和集合(没有集合自动创建)一,mongodb传数据到mysql。编辑mongodb output组件。选择“表输入”组件,编辑表输入。
原创
发布博客 2022.11.17 ·
1058 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

Eclipse 报错 Missing artifact jdk.tools:jdk.tools:jar:1.6(已解决)

在eclipse中创建java项目后,pom文件中照常添加依赖,结果报错。pom文件中添加如下依赖,然后右键项目刷新Refresh后,没有再报错。
原创
发布博客 2022.10.13 ·
1278 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

HDFS小文件问题分析与解决方案(面试层面~)

1)会有什么影响(1)存储层面:1个文件块,占用namenode多大内存150字节1亿个小文件150字节1个文件块 * 150字节(2)计算层面:每个小文件都会起到一个MapTask,占用了大量计算资源2)怎么解决(1)采用har归档方式,将小文件归档(2)采用CombineTextInputFormat(3)有小文件场景开启JVM重用;如果没有小文件,不要开启JVM重用,因为会一
原创
发布博客 2022.04.14 ·
2809 阅读 ·
11 点赞 ·
15 评论 ·
12 收藏

JAVA JVM 运行机制和基本原理

JVM的基础概念JVM的中文名称叫Java虚拟机,它是由软件技术模拟出计算机运行的一个虚拟的计算机。JVM也充当着一个翻译官的角色,我们编写出的Java程序,是不能够被操作系统所直接识别的,这时候JVM的作用就体现出来了,它负责把我们的程序翻译给系统“听”,告诉它我们的程序需要做什么操作。我们都知道Java的程序需要经过编译后,产生.Class文件,JVM才能识别并运行它,JVM针对每个操作系统开发其对应的解释器,所以只要其操作系统有对应版本的JVM,那么这份Java编译后的代码就能够运行起来,这就是
原创
发布博客 2022.04.12 ·
667 阅读 ·
9 点赞 ·
10 评论 ·
8 收藏

建造者设计模式(角色分析)

使用简单的对象一步一步构建成一个复杂的对象。概念:定义:讲一个复杂对象的构建与它的表示分离,使得同样的构建过程可以创建不同的表示。主要作用:在用户不知道 对象的建造过程和细节 的情况下就可以直接创建复杂的对象如何使用:用户只需要给出指定复杂对象的类型和内容,建造者模式负责按顺序创建负责对象(把内部的建造过程和细节隐藏起来)解决的问题:①方便用户创建负责的对象(不需要知道实现过程)②代码复用性\封装性(将对象那个构建过程和细节进行封装和复用)注意事项:与工厂模式的区别是:建造者模式更加关注零件
原创
发布博客 2021.12.30 ·
241 阅读 ·
2 点赞 ·
5 评论 ·
1 收藏

建表规范的简单了解

基本建表规范:自增主键一般都需要设置(id int unsigned NOT NULL AUTO_INCREMENT`);不定长字符串长度使用varchar类型,需要考虑实际业务最长长度的基础上扩容20%到40%为宜,且长度取2的指数长为宜(64,128,256等);定长长度使用char类型,长度直接取实际长度即可,类似于手机号字段;所有字段除了软删除字段(delete_time),都需要设置为not null,并且设置默认值(字符串默认值为’’,整型默认值为0);基本所有的字段,表
原创
发布博客 2021.12.27 ·
701 阅读 ·
1 点赞 ·
1 评论 ·
0 收藏

派生表 简单了解和定义

派生表的定义派生表是在外部查询的FROM子句中定义的,只要外部查询一结束,派生表也就不存在了。派生表的作用派生表可以简化查询,避免使用临时表。相比手动生成临时表性能更优越。派生表与其他表一样出现在查询的FROM子句中。例如:SELECT * FROM ( SELECT * FROM Customers WHERE 城市='广州' ) Cus其中Cus就是派生表派生表的特征● 所有列必须要有名称,出现无列名的要重命名● 列名称必须是要唯一,相同名称肯定是不允许的● 不允许使用ORDER
原创
发布博客 2021.12.27 ·
1946 阅读 ·
1 点赞 ·
0 评论 ·
5 收藏
加载更多