用筛选法求100以内的素数

/*
用筛选法求100以内的素数
所谓“筛选法”指的是“埃拉托色尼(Eratosthenes)筛法”。他是古希腊的著名数学家。他采取的方法是,在一张纸上写上1到100全部整数,然后逐个判断它们是否是素数,找出一个非素数,就把它挖掉,最后剩下的就是素数。

具体做法如下:
<1> 先将1挖掉(因为1不是素数)。
<2> 用2去除它后面的各个数,把能被2整除的数挖掉,即把2的倍数挖掉。
<3> 用3去除它后面的各数,把3的倍数挖掉。
<4> 分别用4、5…各数作为除数去除这些数以后的各数。这个过程一直进行到在除数后面的数已全被挖掉为止。例如找1~50的素数,要一直进行到除数为47为止(事实上,可以简化,如果需要找1~n范围内素数表,只需进行到除数为n^2(根号n),取其整数即可。例如对1~50,只需进行到将50^2作为除数即可。)

如上算法可表示为:
<1> 挖去1;
<2> 用刚才被挖去的数的下一个数p去除p后面各数,把p的倍数挖掉;
<3> 检查p是否小于n^2的整数部分(如果n=1000, 则检查p<31?),如果是,则返回(2)继续执行,否则就结束;
<4> 纸上剩下的数就是素数。


定义1个数组a, a[1]~a[100] 分别代表1~100这100个数。
如果检查出数组a的某一元素的值不是素数,就将其值设为0,最后剩下不为0的就是素数。

*/

#include <iostream>
#include <iomanip>
using namespace std;
#include <math.h>
int main()
 {int i,j,n,a[101]; //定义a数组包含101个元素
  for (i=1;i<=100;i++) //a[0]不用,只用a[1]~a[100]
    a[i]=i; //使a[1]~a[100]得值分别为1~100
  a[1]=0;   //先“挖掉”a[1]
  for (i=2;i<sqrt(100);i++)  //i表示被除数下标,从2~sqrt(n) n=100
    for (j=i+1;j<=100;j++)  //j表示除数下标,从i后面的i+1到100
       {if(a[i]!=0 && a[j]!=0)  
	      if (a[j]%a[i]==0)  //如果整除,表示a[j]不是素数,则挖掉它
			  a[j]=0;  }        
    cout<<endl;
    for (i=1,n=0;i<=100;i++)  
     {if (a[i]!=0)   //没有被挖掉的数,即值不为0的数,为素数
       {cout<<setw(5)<<a[i]<<" ";
	    n++;}  //累计素数个数      
      if(n==10) //输出10个数后换行
        {cout<<endl;
   	     n=0;}
     }
	cout<<endl;
	return 0;
   } 


 

已标记关键词 清除标记
相关推荐
©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页