目标检测现在太卷了。这个领域里想更容易出论文,要重点关注小目标检测。
小目标检测能用于遥感、交通、军事、自动驾驶等,应用方向广!同时还面临分辨率低、尺度跨度大、类别不平衡等挑战,可挖掘创新点多,容易出idea发paper!
今天分享我整理的小目标检测20篇经典研究+30篇最新创新思路!涵盖领域内多个影响力很大的研究,以及24年6月最新的前沿创新!
所有50个小目标检测研究,全部帮你总结核心思路+全部都有开源代码!想要的同学扫码获取下载方式!

扫码获取50篇小目标检测研究合集
论文PDF+代码文件

20篇经典研究+代码

30篇最新创新思路+代码

扫码获取50篇小目标检测研究合集
论文PDF+代码文件
“
30篇最新创新思路+代码
HCF-Net: Hierarchical Context Fusion Network for Infrared Small Object Detection
一种深度学习方法HCF-Net,包括并行块感知注意力(PPA)模块、维度感知选择性整合(DASI)模块和多膨胀通道细化器(MDCR)模块。通过多个实用的模块显著提高了红外小目标检测的性能。

MIM-ISTD: MAMBA-IN-MAMBA FOR EFFICIENT INFRARED SMALL TARGET DETECTION
利用Mamba机制的多层次特征提取能力,在模型内部嵌入多层次的Mamba结构,使其能够捕捉红外图像中的细微特征和背景信息,提升小目标检测的精度和效率。


扫码获取50篇小目标检测研究合集
论文PDF+代码文件

“
20篇经典研究+代码
An Energy and GPU-Computation Efficient Backbone Network for Real-Time Object Detection
提出了一种能效和计算效率更高的架构VoVNet,它由一次性聚合(One-Shot Aggregation, OSA)组成。OSA不仅采用了DenseNet的优势,即用多感受野表示多样化的特征,还通过在最后的特诊图中仅一次性聚合所有特征,克服了密集连接的效率问题。小目标检测性能卓越。

Small-Object Detection in Remote Sensing Images with End-to-End Edge-Enhanced GAN and Object Detector Network
提出端到端边缘增强型GAN,包含三个组件的架构:ESRGAN、边缘增强网络(EEN)和检测网络。对ESRGAN和EEN都使用了残差密集块(RRDB),对于检测网络使用了更快的基于区域的卷积网络(FRCNN)(两阶段检测器)和单次多框检测器(SSD)(单阶段检测器)。专门用于提高遥感图像中小目标的检测能力


扫码获取50篇小目标检测研究合集
论文PDF+代码文件

691

被折叠的 条评论
为什么被折叠?



