点击蓝字,关注我们
关注并星标
从此不迷路
计算机视觉研究院
公众号ID|计算机视觉研究院
学习群|扫码在主页获取加入方式
论文地址:https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10571945
计算机视觉研究院专栏
Column of Computer Vision Institute
山体滑坡是一种广泛分布且极具破坏力的自然灾害,对人类生命、安全以及自然资产构成了严重威胁。研究利用遥感图像进行精确山体滑坡检测的有效方法,具有重要的学术和实际意义。
PART/1
概述
我们提出了一种LS-YOLO模型,这是一种新颖且有效的利用遥感图像进行山体滑坡检测的模型。我们首先构建了一个多尺度山体滑坡数据集(MSLD),并在数据增强过程中引入了随机种子,以增强数据的鲁棒性。考虑到遥感图像中山体滑坡的多尺度特征,我们基于高效通道注意力机制、平均池化和空间可分离卷积设计了一个多尺度特征提取模块。为了增大模型的感受野,我们在解耦头中采用了空洞卷积。具体而言,将由空洞卷积组成的上下文增强模块添加到解耦头回归任务分支中,然后使用改进后的解耦头来替代YOLOv5s中的耦合头。大量实验表明,我们提出的模型在多尺度山体滑坡检测方面具有高性能,并且优于其他目标检测模型(更快的RCNN、SSD、EfficientDet-D0、YOLOv5s、YOLOv7和YOLOX)。与基线模型YOLOv5s相比,LS-YOLO在检测山体滑坡时的平均精度(AP)提高了2.18%,达到了97.06%。
PART/2
背景及动机
山体滑坡是山区最为常见且具有破坏力的灾害之一。它常常由地震或暴雨引发,不仅会破坏道路、桥梁和电线等基础设施,还会毁坏植被和土壤,导致土地退化。在中国,由于地域辽阔、山脉众多,且国内大部分地区常年降雨丰富,使得山体滑坡灾害发生的频率明显高于其他国家。尤其是中国云南、贵州和四川的山区,经常发生大量的山体滑坡事件。
因此,准确检测山体滑坡对于预防和应对山体滑坡灾害至关重要。遥感成像凭借其高空间分辨率和广泛的覆盖范围,能够对地球进行实时成像。
利用遥感图像进行山体滑坡检测的方法大致可分为两类:
人工目视解译和基于计算机视觉的方法
人工目视解译是由地质专家根据遥感图像中山体滑坡的几何、纹理等特征来判别山体滑坡。尽管人工目视解译山体滑坡的准确率较高,但它存在耗时、依赖专家专业知识以及定量描述易出错等缺点。因此,人工目视解译难以满足快速检测山体滑坡的需求。随着遥感技术的快速发展,利用计算机视觉方法,通过遥感图像识别山体滑坡、地震和冰川运动等自然灾害,已成为研究热点。
基于计算机视觉的方法
为解决上述问题提供了很有前景的解决方案,而深度学习是其中最具代表性的方法。近年来,深度学习作为一种人工神经网络模型,在目标检测领域取得了显著进展。随着深度学习的发展,基于计算机视觉的方法已成为山体滑坡检测领域应用最广泛的技术。
利用计算机视觉方法进行山体滑坡检测的研究已经取得了很大进展。然而,仍然存在一些需要进一步研究的问题。首先,在现有的公开山体滑坡数据集中,山体滑坡样本有限,类内差异小,背景简单,这使得有效地训练模型具有挑战性。其次,以往利用计算机视觉方法检测山体滑坡的研究没有充分整合山体滑坡的特征,例如山体滑坡规模范围广和形状多样等,导致山体滑坡检测的准确率较低,难以满足实际需求。本文提出了一种新颖的山体滑坡检测模型(LS-YOLO),该模型在多尺度山体滑坡检测方面表现出色。我们的主要贡献总结如下:
1.创建了一个多尺度山体滑坡数据集(MSLD),它具有山体滑坡样本数量多、类内差异大、山体滑坡规模范围广以及背景复杂等优点。
2.我们提出了新颖的多尺度特征提取(MSFE)模块,通过五个并行分支从多个感受野中充分提取山体滑坡特征。这些分支由平均池化或空间可分离卷积组成,增加了网络的深度,提高了模型对山体滑坡的检测精度。
3.我们对现有的解耦头进行了改进。在解耦头的回归任务中应用了多个空洞卷积。不同空洞率卷积的组合有助于捕获多尺度上下文信息,提高了模型对山体滑坡定位的精度。
PART/3
新框架解释
山体滑坡数据集基于深度学习的山体滑坡检测方法需要大量的山体滑坡图像数据。然而,现有的山体滑坡数据集由于山体滑坡样本有限且相似,无法有效地训练深度学习模型。因此,本文构建了一个多尺度山体滑坡数据集(MSLD)。首先,我们收集了两个公开的山体滑坡数据集,第一个是由Ji等人创建的毕节山体滑坡数据集。研究区域位于中国贵州省西北部的毕节市。该地区面积达26853平方千米,海拔范围在457米至2900米之间。毕节位于青藏高原和东部高地之间的过渡斜坡地带,是中国山体滑坡最严重的地区之一。毕节山体滑坡数据集包含770张含有山体滑坡的正样本图像和2003张不含山体滑坡的负样本图像,这些图像由三颗卫星系列在2018年5月至8月期间获取。图像的地面分辨率为0.8米。
如下图所示,a-原图、b-原图、c-原图和d-原图是原始图像。前四行图像是对这四张原始图像使用离线增强生成的。图像e–j是MSLD中不含山体滑坡的负样本图像。然后,我们在模型训练期间使用在线增强(马赛克、混合和复制粘贴)来更好地训练山体滑坡检测模型。MSLD包含7620张具有多种山体滑坡类型的正样本图像和2003张负样本图像。
YOLO是一种典型的单阶段网络模型,由雷德曼(Redmon)等人在2015年提出。经过一系列的发展,衍生出了YOLOv2、YOLOv3、YOLOv4和YOLOv5。YOLOv5有四个版本,分别是YOLOv5s、YOLOv5m、YOLOv5l和YOLOv5x。模型的规模和检测精度依次递增。这四个版本仅在模型中宽度和深度因子的设置上有所不同。YOLOv5由四个部分组成,分别是输入、主干网络、颈部网络和头部网络。在将输入图像送入主干网络之前,输入部分会对输入图像进行数据增强、自适应锚框计算和自适应图像缩放。主干网络将输入图像转换为多尺度特征图,并提取目标的特征信息。颈部网络融合从主干网络中提取的不同尺度的特征信息。头部网络执行目标检测和置信度计算,并输出网络的预测结果。考虑到其在精度、模型规模和速度之间良好的权衡,本文选择YOLOv5s作为优化的基线模型,并设计了一种新颖的利用遥感图像检测多尺度山体滑坡的模型,称为LS-YOLO。
LS-YOLO模型鉴于遥感图像中山体滑坡的多样性,直接使用通用目标检测模型YOLOv5s来高精度地检测山体滑坡具有挑战性。为了解决这个问题,我们设计了LS-YOLO模型,该模型在山体滑坡检测方面具有出色的性能。
如上图所示,LS-YOLO的特点主要包括以下两个方面:1.提出了一种多尺度特征提取(MSFE)模块,以提高模型对山体滑坡检测的精度。MSFE由高效通道注意力机制(ECA)、平均池化和空间可分离卷积组成。我们将MSFE引入到YOLOv5s的颈部网络中。2.对解耦头进行了改进,以提高模型对山体滑坡定位的精度。由空洞卷积组成的上下文增强模块(CEM)被用于替换解耦头回归任务分支中的3×3卷积。我们改进后的解耦头取代了YOLOv5s中的耦合头。
多尺度特征提取(MSFE)模块遥感图像中山体滑坡的复杂性和多样性使得深度学习模型难以有效地提取山体滑坡的特征信息。在本文中,我们设计了一个MSFE模块,该模块有效地增强了模型对尺度的适应性和非线性能力,最终提高了YOLOv5s检测多尺度目标的性能。
如上图所示,MSFE包含两个分支,第一个分支是一个残差连接,它可以缓解梯度消失问题并加快模型训练速度。第二个分支由ECA、平均池化和空间可分离卷积组成,能够充分提取山体滑坡的特征信息。
1.高效通道注意力机制(EfficientChannelAttention):ECA是一种通用的即插即用模块,可提高卷积神经网络(CNN)的性能。ECA由一个压缩模块和一个激励模块组成,压缩模块用于压缩全局空间信息,激励模块用于实现通道间的交互。
如上图所示,在使用无降维的全局平均池化来聚合特征后,ECA自适应地确定内核大小k。然后,对特征图进行内核大小为k的一维(1-D)卷积,接着使用Sigmoid函数得到通道注意力向量。通过将输入特征图的每个通道乘以注意力向量中对应的元素来缩放通道,从而得到输出特征图。
2.平均池化:平均池化根据核大小计算输入特征图相关区域内像素的平均值。平均池化的优点是无需优化参数,因此可以避免过拟合。
空间可分离卷积:空间可分离卷积在空间维度上将一个标准的卷积操作分解为多个小核卷积操作。
(三)改进的解耦头
如上图所示,YOLOv5s在分类任务和回归任务之间共享参数。然而,一些研究表明,分类任务和回归任务之间存在冲突。分类任务侧重于目标的纹理信息,并将提取的特征识别为与现有类别更具可比性的特征。相反,回归任务优先考虑目标的边缘信息,并根据真实目标的位置坐标调整预测的边界框参数。因此,将分类任务和回归任务解耦将提高模型的检测性能和收敛速度。在本文中,对解耦头进行了改进。改进前后的解耦头结构如下图所示。
在原始的解耦头中,使用两个并行分支来解耦分类和回归任务,以缓解冲突。每个分支都由一个3×3卷积和一个1×1卷积组成。考虑到遥感图像中山体滑坡的多尺度特征,本文使用由空洞卷积组成的上下文增强模块(CEM)来替代回归任务分支上的3×3卷积,以提高模型对多尺度山体滑坡的定位精度。
PART/4
实验及可视化
如上图和表所示,LS-YOLO在多尺度山体滑坡检测方面取得了领先的性能。LS-YOLO在山体滑坡检测中的精确率(P)为97.60%,比排名第二的YOLOX的97.03%高0.57%。LS-YOLO在检测山体滑坡时的召回率为94.56%,比排名第二的更快的RCNN的93.33%高1.23%。LS-YOLO在检测山体滑坡时的平均精度(AP)为97.06%,比排名第二的YOLOX的95.55%高1.51%。与基线模型YOLOv5s相比,LS-YOLO在山体滑坡检测中的精确率(P)、召回率(R)和平均精度(AP)分别提高了1.03%、3.47%和2.18%。由于模型中分类和回归任务的解耦,LS-YOLO的结构更加复杂,运行速度也较慢。
上图显示了不同模型在山体滑坡检测中的比较结果。绿色框和红色框分别表示真实目标和模型的检测结果。同时,为了进行更准确的分析,我们使用蓝色框和黄色框来表示漏检的山体滑坡和误检的山体滑坡。
1.**单个山体滑坡检测结果**:如上图的左半部分所示,当面对遥感图像中存在单个山体滑坡时,更快的RCNN和YOLOv5s有很多误检结果,并且很容易将河流、山谷等误检为山体滑坡。YOLOv5s和YOLOv7有一些漏检结果,在检测山体滑坡方面表现不佳,难以有效地检测山体滑坡。SSD、EfficientDet-D0、YOLOX和LS-YOLO的误检和漏检结果较少;然而,SSD、EfficientDet-D0和YOLOX在山体滑坡定位的准确性方面低于我们提出的模型LS-YOLO。
2.**多个山体滑坡检测结果**:如上图的右半部分所示,当面对遥感图像中存在多个山体滑坡时,EfficientDet-D0和YOLOv7有大量漏检的山体滑坡,而YOLOv5s有一些误检的山体滑坡。尽管更快的RCNN、SSD、YOLOX和LS-YOLO的误检和漏检的山体滑坡较少,但LS-YOLO在山体滑坡定位方面比其他模型更准确。通过实验分析可以明显看出,与现有模型相比,所提出的模型LS-YOLO在检测遥感图像中的单个山体滑坡和多个山体滑坡方面都具有相当大的优势。LS-YOLO在山体滑坡检测方面取得了领先的性能,可以满足实际工业应用的需求。
转载请联系本公众号获得授权
计算机视觉研究院学习群等你加入!
ABOUT
计算机视觉研究院
计算机视觉研究院主要涉及深度学习领域,主要致力于目标检测、目标跟踪、图像分割、OCR、模型量化、模型部署等研究方向。研究院每日分享最新的论文算法新框架,提供论文一键下载,并分享实战项目。研究院主要着重”技术研究“和“实践落地”。研究院会针对不同领域分享实践过程,让大家真正体会摆脱理论的真实场景,培养爱动手编程爱动脑思考的习惯!
往期推荐
🔗