寻找下一个最大排列

//对于给定的排列a1 a2 a3....an依据字典顺序来生成下一个最大的排列。
//首先找到整数a[j]和a[j+1],使得a[j]<a[j+1]并且 a[j+1] > a[j+2] >....>a[n];
//即在这个排列中的最后一对相邻的整数,使得这个对的第一个整数小于第二个整数。然后,把
//a[j+1]  a[j+2] ....a[n]中,在按照递增排序j+1到n的数。
//这样就得到了下一个最大的排列。


#include <iostream>
using namespace std;
#define KeyType int
void QuickSort(KeyType R[],int s,int t);//[s,t]
void next_max(int a[],int n)//n为数组的量
{
 for (int i = 0; i < n; ++i)
  	cout<<a[i];
  cout<<"\n";


	int j=n-1;
	while(a[j-1] >= a[j])
       --j;
	--j;//确定这个j


   int min=j+1;
   for ( i = j+1; i < n; ++i)
   	 if (a[i] > a[j] && a[i] < a[min])//大于a[j]的最小的整数放到第j个位置  	 
   	 	min=i;


   int temp=a[j];//大于a[j]的最小的整数放到第j个位置  
   a[j]=a[min];
   a[min]=temp;


  QuickSort(a,j+1,n-1);
  for ( i = 0; i < n; ++i)
  	cout<<a[i];


}


//--------快速排序算法-----------真的很快啊----  
void QuickSort(KeyType R[],int s,int t)//[s,t]
{  
    int i=s,j=t;  
    KeyType tmp;  
    if (s<t)                 //区间内至少存在两个元素的情况  
    {  
        tmp=R[s];           //用区间的第1个元素作为基准  
        while (i!=j)        //从区间两端交替向中间扫描,直至i=j为止  
        {  
            while (j>i && R[j]>=tmp)   
                j--;        //从右向左扫描,找第1个小于tmp的R[j]  
            R[i]=R[j];      //找到这样的R[j],R[i]和R[j]交换  
            while (i<j && R[i]<=tmp)   
                i++;        //从左向右扫描,找第1个大于tmp的元素R[i]  
            R[j]=R[i];      //找到这样的R[i],R[i]和R[j]交换  
        }  
        R[i]=tmp;  
        QuickSort(R,s,i-1); //对左区间递归排序  
        QuickSort(R,i+1,t); //对右区间递归排序  
    }  
} 
int main(int argc, char const *argv[])
{
	int a[8]={5,2,1,7,6,6,5,2};
	next_max(a,8);


	return 0;
}
#include <iostream>  
#include <algorithm>
using namespace std;  
#define KeyType int  
void next_max(int a[],int n)//n为数组的量  
{  
 for (int i = 0; i < n; ++i)  
    cout<<a[i];  
  cout<<"\n";  
  
  
    int j=n-1;  
    while(a[j-1] >= a[j])  
       --j;  
    --j;//确定这个j  
  
  
   int min=j+1;  
   for (int i = j+1; i < n; ++i)  
     if (a[i] > a[j] && a[i] < a[min])//大于a[j]的最小的整数放到第j个位置      
        min=i;  
  
  
   int temp=a[j];//大于a[j]的最小的整数放到第j个位置    
   a[j]=a[min];  
   a[min]=temp;  
  
  
  //QuickSort(a,j+1,n-1);  
  sort(a+j+1,a+n);
  for (int i = 0; i < n; ++i)  
    cout<<a[i];  
  
  
}  
  
  
int main(int argc, char const *argv[])  
{  
    int a[8]={5,2,1,7,6,6,5,2};  
    next_max(a,8);  
  
  
    return 0;  
}  



在C语言中,"下一个排列"是一个常见的编程题目,通常涉及到数组的重新排序,尤其是当数组表示一个序列或组合时。给定一个整数数组,你需要找到所有可能的下一个排列,即当前排列之后的所有合法顺序。这个问题一般采用递归和回溯的方式来解决。 基本思路是先确定数组中的最大元素,然后将它移到当前排列的最后一位。接着对剩余的元素进行全排列,形成新的排列。如果数组只有一个元素或者已经是最小排列(升序),则返回空或结束递归。 下面是一个简单的示例代码片段: ```c #include <stdio.h> #include <stdlib.h> void swap(int* a, int* b) { int temp = *a; *a = *b; *b = temp; } void nextPermutation(int nums[], int n) { if (n <= 1) return; // 如果只剩一个元素或为空,直接结束 int i = n - 2; // 寻找一个非降序的i while (i >= 0 && nums[i] >= nums[i + 1]) i--; if (i == -1) { // 全部降序,倒置数组 int j = n - 1; while (j > 0) { swap(&nums[j], &nums[j - 1]); j--; } return; } int j = n - 1; // 寻找大于nums[i]的最大元素 while (j > i && nums[j] <= nums[i]) j--; swap(&nums[i], &nums[j]); // 对后半部分进行递归排列 for (int k = n - 1; k > i; k--) { swap(&nums[k], &nums[k - 1]); nextPermutation(nums, k); } } // 示例 int main() { int arr[] = {1, 2, 3}; int n = sizeof(arr) / sizeof(arr[0]); nextPermutation(arr, n); for (int i = 0; i < n; i++) { printf("%d ", arr[i]); } printf("\n"); return 0; } ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

紫云的博客

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>