BFS算法之走迷宫(c++)

题目描述:

给定一个 n×m 的二维整数数组,用来表示一个迷宫,数组中只包含 0 或 1,其中 0 表示可以走的路,1 表示不可通过的墙壁。

最初,有一个人位于左上角 (1,1) 处,已知该人每次可以向上、下、左、右任意一个方向移动一个位置。

请问,该人从左上角移动至右下角(n,m) 处,至少需要移动多少次。

数据保证 (1,1) 处和 (n,m) 处的数字为 0,且一定至少存在一条通路。

输入格式

第一行包含两个整数 n 和 m。

接下来 n 行,每行包含 m 个整数(0 或 1),表示完整的二维数组迷宫。

输出格式

输出一个整数,表示从左上角移动至右下角的最少移动次数。

数据范围

1≤n,m≤100

输入样例:
5 5
0 1 0 0 0
0 1 0 1 0
0 0 0 0 0
0 1 1 1 0
0 0 0 1 0
输出样例:
8

代码实现:

#include <bits/stdc++.h>
using namespace std;
const int N = 110;//最大可接受迷宫边长 
int n,m;
int g[N][N];//存储迷宫 
int d[N][N];//存储距离 
pair<int,int> q[N * N];//pair存储点的坐标 

int bfs()
{
	int hh = 0, tt = 0;//hh为头指针,tt为尾指针 
	q[0] = {0,0};//起点初始化为{0,0} 
	
	memset(d, -1 , sizeof d);//将d数组初始化为-1,表明所有的点都没被遍历过 
	d[0][0] = 0;
	
	int dx[4] = {-1, 0, 1, 0}, dy[4] = {0, -1, 0, 1};//二维向量,用于之后模拟"上下左右"的行动 
	
	while (hh <= tt)//模拟队列 
	{
		auto t = q[ hh ++ ];//初始状态为{0,0} 
		
		for(int i = 0; i < 4; i ++ )
		{
			int x = t.first + dx[i], y = t.second + dy[i];//模拟从起点开始上下左右移动 
			if(x >= 0 && x < n && y>= 0 && y < m && g[x][y] == 0 &&d[x][y] == -1)//如果移动后没有超出迷宫范围、移动后的点不是墙壁且移动后的点从未被抵达过 
			{
				d[x][y] = d[t.first][t.second] + 1;//距离+1 
				q[ ++ tt ] = {x,y};//将该点存进队尾 
			}
		}
	}
	return d[n - 1][m - 1];//返回{0,0}到{n-1,m-1}的最短距离 
}
int main()
{
	cin >> n >> m;
	
	for(int i = 0; i < n; i ++)
	{
		for(int j = 0; j < m; j ++)
		{
			cin >> g[i][j];
		}
	}
	cout << bfs() << endl;
	
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值