题目描述:
给定一个 n×m 的二维整数数组,用来表示一个迷宫,数组中只包含 0 或 1,其中 0 表示可以走的路,1 表示不可通过的墙壁。
最初,有一个人位于左上角 (1,1) 处,已知该人每次可以向上、下、左、右任意一个方向移动一个位置。
请问,该人从左上角移动至右下角(n,m) 处,至少需要移动多少次。
数据保证 (1,1) 处和 (n,m) 处的数字为 0,且一定至少存在一条通路。
输入格式
第一行包含两个整数 n 和 m。
接下来 n 行,每行包含 m 个整数(0 或 1),表示完整的二维数组迷宫。
输出格式
输出一个整数,表示从左上角移动至右下角的最少移动次数。
数据范围
1≤n,m≤100
输入样例:
5 5
0 1 0 0 0
0 1 0 1 0
0 0 0 0 0
0 1 1 1 0
0 0 0 1 0
输出样例:
8
代码实现:
#include <bits/stdc++.h>
using namespace std;
const int N = 110;//最大可接受迷宫边长
int n,m;
int g[N][N];//存储迷宫
int d[N][N];//存储距离
pair<int,int> q[N * N];//pair存储点的坐标
int bfs()
{
int hh = 0, tt = 0;//hh为头指针,tt为尾指针
q[0] = {0,0};//起点初始化为{0,0}
memset(d, -1 , sizeof d);//将d数组初始化为-1,表明所有的点都没被遍历过
d[0][0] = 0;
int dx[4] = {-1, 0, 1, 0}, dy[4] = {0, -1, 0, 1};//二维向量,用于之后模拟"上下左右"的行动
while (hh <= tt)//模拟队列
{
auto t = q[ hh ++ ];//初始状态为{0,0}
for(int i = 0; i < 4; i ++ )
{
int x = t.first + dx[i], y = t.second + dy[i];//模拟从起点开始上下左右移动
if(x >= 0 && x < n && y>= 0 && y < m && g[x][y] == 0 &&d[x][y] == -1)//如果移动后没有超出迷宫范围、移动后的点不是墙壁且移动后的点从未被抵达过
{
d[x][y] = d[t.first][t.second] + 1;//距离+1
q[ ++ tt ] = {x,y};//将该点存进队尾
}
}
}
return d[n - 1][m - 1];//返回{0,0}到{n-1,m-1}的最短距离
}
int main()
{
cin >> n >> m;
for(int i = 0; i < n; i ++)
{
for(int j = 0; j < m; j ++)
{
cin >> g[i][j];
}
}
cout << bfs() << endl;
return 0;
}