POJ 2478 法雷级数

题意:给出法雷级数定义

F2 = {1/2} 

F3 = {1/3, 1/2, 2/3} 
F4 = {1/4, 1/3, 1/2, 2/3, 3/4} 

F5 = {1/5, 1/4, 1/3, 2/5, 1/2, 3/5, 2/3, 3/4, 4/5}  求f[n]组法雷级数分数的个数。

不难发现就是欧拉函数前n项的和。运用递推求欧拉函数即可。再发个快的,留着比赛做模板。

#include <iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
#define maxn 1000008
long long phi[maxn];
void getphi()
{
    for(int i=1; i<maxn; i++) phi[i]=i;
    for(int i=2; i<maxn; i+=2) phi[i]>>=1;
    for(int i=3; i<maxn; i+=2)
        if(phi[i]==i)
        {
            for(int j=i; j<maxn; j+=i)
                phi[j]=phi[j]/i*(i-1);
        }
    for(int i=3; i<maxn; i++)
        phi[i]+=phi[i-1];
}
int main()
{
    getphi();
    int n;
    while(~scanf("%d",&n),n)
        printf("%lld\n",phi[n]);
    return 0;
}
网上找的快的79ms
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<algorithm>

#ifdef unix
#define lld "%lld"
#else
#define lld "%I64d"
#endif

using namespace std;

const int maxn=1000005;

int n;
int prime[maxn/10],prime_size;
bool prime_flag[maxn]= {1,1};
int phi[maxn]= {0,1};
long long ans[maxn];

void mk_prime()
{
    for(int i=2; i<=n; i++)
    {
        if(prime_flag[i]==0)
        {
            prime[prime_size++]=i;
            phi[i]=i-1;
        }
        for(int j=0; j<prime_size && i*prime[j]<=n; j++)
        {
            prime_flag[i*prime[j]]=true;
            if(i%prime[j]==0)
            {
                phi[i*prime[j]]=phi[i]*prime[j];
                break;
            }
            else
            {
                phi[i*prime[j]]=phi[i]*(prime[j]-1);
            }
        }
    }
}

int main()
{
    n=maxn-2;
    mk_prime();
    for(int i=1; i<maxn; i++)
        ans[i]=ans[i-1]+phi[i];
    while(true)
    {
        scanf("%d",&n);
        if(n==0)
            return 0;
        printf(lld"\n",ans[n]-1ll);
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值