立体视觉(Stereo Vision)-本征矩阵(essential matrix)和基本矩阵(fundamental matrix)

本文介绍了立体视觉中的本征矩阵(essential matrix)和基本矩阵(fundamental matrix)的概念及其在物体深度恢复和点匹配中的应用。通过极线几何和极线约束理论,阐述了如何在已知左右图像对的情况下,利用本征矩阵和基本矩阵进行点匹配,以及在相机校准和未校准情况下的处理方法。同时,探讨了求解基本矩阵的优化问题。
摘要由CSDN通过智能技术生成

1 物体深度

问题描述:从不同的位置拍摄相同物体的两张图片,恢复其深度

这里假设摄像机的镜头平行

由相似三角形:

由上面第一、二等式可得:

深度与视差成反比

 

2 如何配对左右图片的点

问题描述:已知两张图像,由不同的照相机拍下,在左图中选一点,

如何在右图中找到对应的点。

由上图可知,

左图中点 x 对应在右图中的点位于线段 l' 上

右图中点 x‘ 对应在左图中的点位于线段 l 上

2.1 极线几何(epipolar geometry)的基本概念

  • 基线(baseline): 连接两个照相机中心点的线段,如图中的OO'。
  • 极平面(epipolar plane): 由两个相机中心点, 和物体X组成的平面,如图中的OO'X。
  • 极点(epipoles): 基线与两张图像的交点,如图中的e, e'。
  • 极线࿰
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值