h_l_dou
码龄6年
关注
提问 私信
  • 博客:463,176
    463,176
    总访问量
  • 22
    原创
  • 710,101
    排名
  • 84
    粉丝
  • 0
    铁粉
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:北京市
  • 加入CSDN时间: 2018-09-18
博客简介:

h_l_dou的博客

查看详细资料
个人成就
  • 获得175次点赞
  • 内容获得46次评论
  • 获得922次收藏
创作历程
  • 7篇
    2020年
  • 31篇
    2019年
  • 56篇
    2018年
成就勋章
TA的专栏
  • 论文阅读
    4篇
  • 组会
  • Diary
  • 去雨
    4篇
  • 图像增强
    5篇
  • 数学知识
    25篇
  • 神经网络
    2篇
  • 工具使用
    15篇
  • 图像处理
    23篇
  • 优化方法
    2篇
  • python代码
    4篇
  • octave代码
    1篇
  • linux
    7篇
  • 讲座
  • 深度学习
    9篇
  • Matlab
    7篇
  • 机器学习
    4篇
  • 数据集
    1篇
  • 计算机视觉
    5篇
  • C语言
    1篇
  • 文章发表
    1篇
  • 网站相关
    2篇
兴趣领域 设置
  • 人工智能
    opencv计算机视觉机器学习深度学习神经网络图像处理
创作活动更多

AI大模型如何赋能电商行业,引领变革?

如何使用AI技术实现购物推荐、会员分类、商品定价等方面的创新应用?如何运用AI技术提高电商平台的销售效率和用户体验呢?欢迎分享您的看法

179人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

深度学习中过拟合与防止过拟合的方法

原文:https://blog.csdn.net/chen645096127/article/details/789909281.什么是过拟合?过拟合(overfitting)是指在模型参数拟合过程中的问题,由于训练数据包含抽样误差,训练时,复杂的模型将抽样误差也考虑在内,将抽样误差也进行了很好的拟合。具体表现就是最终模型在训练集上效果好;在测试集上效果差。模型泛化能力弱。2.过拟...
转载
发布博客 2020.02.25 ·
733 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Hierarchical Features Driven Residual Learning for Depth Map Super-Resolution 2019TIP 论文阅读

Hierarchical Features Driven Residual Learning for Depth Map Super-Resolution 2019 TIP论文阅读AbstractAbstract Rapid development of affordable and portable consumer depth cameras facilitates the use of ...
原创
发布博客 2020.02.25 ·
1199 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

大话“人工智能、数据科学、机器学习”--综述 论文阅读

原文来自对如下文章的总结:https://zhuanlan.zhihu.com/p/26645993本文提纲:1,人数机的概念 2,AI的应用领域 3,AI的解法-机器学习 4,机器学习底层的模型-运筹、统计 5,AI的算法 6,强AI vs 弱AI 7,AI学术界、工业界的全球排名1,概念–人工智能(Artificial Intelligence)、数据科学(Data Science)、大...
原创
发布博客 2020.02.15 ·
659 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Very Power Efficient Neural Time-of-Flight阅读

Very Power Efficient Neural Time-of-FlightAbstractIn this paper, we show that despite the weak signals in many areas under extreme short exposure setting, these signals as a whole can be well utiliz...
原创
发布博客 2020.02.15 ·
1572 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

SR_BriefReview

Paper Title:Deep Learning for Single Image Super-Resolution:A Brief ReviewI.Sectionssection2:相关背景概念section3:有效神经网络结构forSISRsection4:SR不同的用处II.Backgrounds1.2.Interpolation-based SISR methods, su...
原创
发布博客 2020.02.10 ·
462 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

【转】一起读懂传说中的经典:受限玻尔兹曼机

转自公众号:机器之心Pro原文:https://baijiahao.baidu.com/s?id=1599798281463567369&wfr=spider&for=pc尽管性能没有流行的生成模型好,但受限玻尔兹曼机还是很多读者都希望了解的内容。这不仅是因为深度学习的复兴很大程度上是以它为前锋,同时它那种逐层训练与重构的思想也非常有意思。本文介绍了什么是受限玻尔兹曼机,以及它...
转载
发布博客 2020.01.15 ·
484 阅读 ·
0 点赞 ·
0 评论 ·
3 收藏

pycharm2019+anaconda3远程调试配置

转自:https://blog.csdn.net/manduner/article/details/82349788 1,前言本篇文章的方法转载自https://blog.csdn.net/qq_15192373/article/details/81231095 ,该博文提供的两种方法非常实用,亲...
原创
发布博客 2020.01.14 ·
899 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

OpenCV3.4.3安装详解(转)

原文:https://blog.csdn.net/qq_15698613/article/details/83592039 第一步打开opencv官方网站,下载opencv最新稳定版本:https://opencv.org/releases.html点击以后,会跳转网页,进入网页后,会等待下载,大概5秒...
转载
发布博客 2019.10.28 ·
1418 阅读 ·
1 点赞 ·
0 评论 ·
5 收藏

吴恩达 向量化(Vectorization)

向量化(Vectorization)在深度学习的算法中,我们通常拥有大量的数据,在程序的编写过程中,应该尽最大可能的少使用 loop 循环语句,利用 python 可以实现矩阵运算,进而来提高程序的运行速度,避免 for 循环的使用。逻辑回归向量化输入矩阵XX:(nx,m)(nx,m)权重矩阵ww:(nx,1)(nx,1)偏置bb:为一个常数输出矩阵YY:(1,m)(1,m)所有 m...
原创
发布博客 2019.10.21 ·
628 阅读 ·
1 点赞 ·
0 评论 ·
1 收藏

Coursera | Andrew Ng (01-week-2-2.9)—Logistic 回归中的梯度下降法

版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。 ...
转载
发布博客 2019.10.21 ·
173 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

国内外从事CV相关的企业

原文作者法不一于2012年,仅供参考提示:本文为笔者原创,转载请注明出处:blog.csdn.net/carson2005经常碰到朋友问我国内从事计算机视觉(CV)领域的公司的发展情况,产品情况,甚至找工作等问题,这里,我给出自己收集的国内从事CV相关领域的公司网址及其主要产品,有兴趣的朋友可以去看看。另外,资料整理的不是很完善,后续我会继续更新和添加,并及时在我博客进行更新(blog.cs...
转载
发布博客 2019.07.30 ·
1872 阅读 ·
1 点赞 ·
0 评论 ·
1 收藏

一文看懂迁移学习:怎样用预训练模型搞定深度学习? ——重用神经网络的结构

原文:https://www.cnblogs.com/bonelee/p/8921311.html以上示例都是人类的迁移学习的能力。迁移学习是什么?所谓迁移学习,或者领域适应Domain Adaptation,一般就是要将从源领域(Source Domain)学习到的东西应用到目标领域(Target Domain)上去。源领域和目标领域之间往往有gap/domain discrepan...
转载
发布博客 2019.05.06 ·
608 阅读 ·
1 点赞 ·
0 评论 ·
7 收藏

车道线检测算法LaneNet + H-Net(论文解读)

原文:https://www.jianshu.com/p/c6d38d648509 车道线检测算法LaneNet + H-Net(论文解读) <!-- 作者区域 --> <div class="author"> <a class="avatar" href="/u/2c8419c654a7"> <...
转载
发布博客 2019.05.05 ·
4336 阅读 ·
1 点赞 ·
1 评论 ·
25 收藏

[深度学习] 车道线检测调研(lane detection)

原文:https://blog.csdn.net/soulmeetliang/article/details/89398412 背景车道线检测作为自动驾驶领域的常规工作,在深度学习的浪潮中又有了很大的进步,在此分享我所做的调研工作,部分为ppt截图,为了方便请谅解。车道线检测工作的局限性如上图所示,车道线检测工作的baseline并不明确,不同...
转载
发布博客 2019.05.05 ·
3480 阅读 ·
0 点赞 ·
1 评论 ·
29 收藏

HTML 参考手册

html教程:http://www.w3school.com.cn/html/index.asp参考手册:http://www.w3school.com.cn/tags/index.asp
原创
发布博客 2019.04.20 ·
375 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

WEB-INF目录与META-INF目录的作用

WEB-INF:/WEB-INF/web.xmlWeb应用程序配置文件,描述了 servlet 和其他的应用组件配置及命名规则。 /WEB-INF/classes/包含了站点所有用的 class 文件,包括 servlet class 和非servlet class,他们不能包含在 .jar文件中。 /WEB-INF/lib/存放web应用需要的各种JAR文件,放置仅在这...
转载
发布博客 2019.03.28 ·
383 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

(国内)计算机核心期刊排名及投稿经验

计算机核心期刊新排名:2004部分核心期刊名单(自动化、计算机部分与无线电、电信部分)自动化、计算机部分1 计算机学报 北京 中国计算机学会等2 软件学报 北京 中国科学院软件研究所3 计算机研究与发展 北京 中国科学院计算技术研究所等4 自动化学报 北京 中国科学院等5 计算机科学 重庆 国家科技部西南信息中心6 控制理论与应用 广州 中国科学院系统科学研究所等7 计算机辅助设计与图形学学报 ...
转载
发布博客 2019.03.25 ·
14828 阅读 ·
2 点赞 ·
4 评论 ·
58 收藏

深入 char * ,char ** ,char a[ ] ,char *a[] 内核

&nbsp;&nbsp; C语言中由于指针的灵活性,导致指针能代替数组使用,或者混合使用,这些导致了许多指针和数组的迷惑,因此,刻意再次深入探究了指针和数组这玩意儿,其他类型的数组比较简单,容易混淆的是字符数组和字符指针这两个。。。下面就开始剖析一下这两位的恩怨情仇。。。 1 数组的本质   数组是多个元素的集合,在内存中分布在地址相连的单元中,所以可以通过其下标访问不同单元的元素。。 2...
转载
发布博客 2019.03.10 ·
305 阅读 ·
0 点赞 ·
2 评论 ·
0 收藏

图像各种评价指标

图像各种评价指标原文:http://sse.tongji.edu.cn/linzhang/IQA/IQA.htm Research on Image Quality Assessment Lin Zhang, School of Software Engineering, Tongji University Lei Zhang, Dept....
转载
发布博客 2019.03.06 ·
6873 阅读 ·
0 点赞 ·
1 评论 ·
13 收藏

Matlab绘制折线图详细方法

原文:https://blog.csdn.net/u012318074/article/details/79894443Matlab绘制折线图属于非常基本的功能,首先给出一个示例代码,有详细的解释,可以根据自己需求进行修改。x=1:1:5;%x轴上的数据,第一个值代表数据开始,第二个值代表间隔,第三个值代表终止 a=[203.024,113.857,256.259,244.888,293.3...
转载
发布博客 2019.02.19 ·
4590 阅读 ·
2 点赞 ·
0 评论 ·
15 收藏
加载更多