【nlp论文阅读】Adversal Neural Machine Translation

这是一篇采用GAN的思路应用在机器翻译的文章,文章发表单位包括微软亚洲研究院


G  生成式网络采用的架构是  RNNSearch Model 【Bahdanau et al.,2014】, RNN 编码解码框架并且带注意力机制。

D  CNN   (这个网络架构来试试文本匹配似乎也很合理) 


训练方法: 采用增强学习的策略更新方式,具体原理还没有弄清楚


待继续弄明白的地方: 【1】  与   GAN 训练方法


【1】 Neural machine translation by jointly learning to align and translate 

Attention  机制的原理是在以往的RNN 模型里输入上加上一个全局的表示,来指代此刻的信息注意力。

要看一下阅读理解在这一方面是怎么处理的。




评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>