84. Largest Rectangle in Histogram

下面的步骤应是 O(n^2) 的, TLE 超时了

import java.util.ArrayList;
import java.util.List;
public class Solution {
    public class Pair{
        int sum;
        int height;
        Pair(int a,int b){
            sum = a;height=b;
        }
    }
    public int largestRectangleArea(int[] heights) {

        int len = heights.length;
        if(len==0) return 0;
        List<Pair> pre = new ArrayList<Pair>();
        Pair pair = new Pair(heights[0],heights[0]);
        pre.add(pair);
        int res = heights[0];
        for(int i=1;i<len;i++){
            List<Pair> cur = new ArrayList<Pair>();
            int cur_h = heights[i];
            boolean cur_max = true;
            int cur_sum;
            for(Pair pr:pre){
                if(pr.height>cur_h){
                    cur_max = false;
                    cur_sum = (pr.sum/pr.height+1)*cur_h;
                    if(cur_sum>res)  res = cur_sum;
                    Pair cur_pr = new Pair(cur_sum, cur_h);
                    cur.add(cur_pr);
                }else{
                    cur_sum = pr.sum + pr.height;
                    if(cur_sum>res)  res = cur_sum;
                    Pair cur_pr = new Pair(cur_sum, pr.height);
                    cur.add(cur_pr);
                }
            }
            if(cur_max){
                cur_sum = cur_h;
                if(cur_sum>res)  res = cur_sum;
                Pair cur_pr = new Pair(cur_sum,cur_h);
                cur.add(cur_pr);
            }
            pre.clear();
            pre.addAll(cur);
        }
        return res;
    }
} 

答案中这是O(n) 的方法,之所以是O(n) 可以这样想,之多遍历两遍。
思想就是针对每一个柱来如果以其为最小,可以形成多大的面积,然后逐一比较。
中间对 stack的出栈的循环实在是太UGLY了。

public class Solution {
    public int largestRectangleArea(int[] height) {
        int len = height.length;
        int maxsum = 0;
        Stack<Integer> s = new Stack<Integer>();
        for(int i=0;i<=len;i++){
            int h = (i==len)?0:height[i];
            if(s.isEmpty()||(h>=height[s.peek()])){
                s.push(i);
            }else{
                int tp = s.pop();
                int sum = height[tp]*(s.isEmpty()?i:i-s.peek()-1);
                maxsum = (sum>maxsum)?sum:maxsum;
                i--;
            }
        }
        return maxsum;
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>