【论文阅读】Addressing the RareWord Problem in NeuralMachine Translation

论文作者:

Minh Tang Luon (Stanford University)
Iiya Sutskever (Google)
Quoc V.Le (Google)
Orial Vinyals (Google)
Wojciech Zaremba (New York Univerity)
这篇论文一看就感觉是一个很好的研究工作,对一个很具体又很重要的问题展开。

摘要

文章的方法是在经过对齐算法处理的数据上进行训练NMT系统,然后再经过post-processing来翻译OOV,模型在WMT’14 English to French的任务提升了2.8 BLUE值,以37.5 BLUE值得分在WMT’14 contest task达到了最优的结果

与Standard phrase-based systems 的比较

pros:
1、模型通用:任何 sequence-to-sequence都可以进行建模处理
2、泛化性能强:在训练语料中没有出现的句子也可以提供翻译
3、不需要额外的短语表与语言模型
4、NMT 系统易于实现
cons:
处理不好OOV情况,如下图对比了phrase-base与NN的翻译结果,phrase-base的方法有显式的对齐处理算法,所以具有处理OOV词语的能力。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>