论文作者:
Minh Tang Luon (Stanford University)
Iiya Sutskever (Google)
Quoc V.Le (Google)
Orial Vinyals (Google)
Wojciech Zaremba (New York Univerity)
这篇论文一看就感觉是一个很好的研究工作,对一个很具体又很重要的问题展开。
摘要
文章的方法是在经过对齐算法处理的数据上进行训练NMT系统,然后再经过post-processing来翻译OOV,模型在WMT’14 English to French的任务提升了2.8 BLUE值,以37.5 BLUE值得分在WMT’14 contest task达到了最优的结果
与Standard phrase-based systems 的比较
pros:
1、模型通用:任何 sequence-to-sequence都可以进行建模处理
2、泛化性能强:在训练语料中没有出现的句子也可以提供翻译
3、不需要额外的短语表与语言模型
4、NMT 系统易于实现
cons:
处理不好OOV情况,如下图对比了phrase-base与NN的翻译结果,phrase-base的方法有显式的对齐处理算法,所以具有处理OOV词语的能力。

最低0.47元/天 解锁文章
1万+

被折叠的 条评论
为什么被折叠?



