2017ACL 论文 作者有来自MSRA的
chatbot 中利用到多轮对话中上下文信息,答案是检索得到的,文章重点在讲如何对多轮对话上下文信息进行建模,答案候选抽取不是重点。
一个示例,比如在下图中两个候选中选哪个?显然应该是候选1,有上下文信息。
模型架构
实现结果
语料:
1. Ubuntu Corpus[1]
2. Douban Conversation Corpus
文章的语料与源码
github:
https://github.com/MarkWuNLP/MultiTurnResponseSelection

本文介绍了一篇2017年ACL会议上的论文,该论文关注如何有效利用多轮对话中的上下文信息来进行回复选择。通过使用特定的模型架构,研究者能够从大量对话数据中(如UbuntuCorpus和DoubanConversationCorpus)学习到有效的表示方法。
1123

被折叠的 条评论
为什么被折叠?



