【论文阅读】Sequential Matching Network: A New Architecture for Multi-turn Response Selection in Retrieval

本文介绍了一篇2017年ACL会议上的论文,该论文关注如何有效利用多轮对话中的上下文信息来进行回复选择。通过使用特定的模型架构,研究者能够从大量对话数据中(如UbuntuCorpus和DoubanConversationCorpus)学习到有效的表示方法。
摘要由CSDN通过智能技术生成

2017ACL 论文 作者有来自MSRA的
这里写图片描述

chatbot 中利用到多轮对话中上下文信息,答案是检索得到的,文章重点在讲如何对多轮对话上下文信息进行建模,答案候选抽取不是重点。

一个示例,比如在下图中两个候选中选哪个?显然应该是候选1,有上下文信息。
这里写图片描述

模型架构
这里写图片描述

实现结果
这里写图片描述

语料:
1. Ubuntu Corpus[1]
2. Douban Conversation Corpus

文章的语料与源码
github:
https://github.com/MarkWuNLP/MultiTurnResponseSelection

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>