machine learning
文章平均质量分 89
hackspace
这个作者很懒,什么都没留下…
展开
-
SVD 的几何意义
We Recommend a Singular Value DecompositionIn this article, we will offer a geometric explanation of singular value decompositions and look at some of the applications of them. ...转载 2014-03-31 16:06:13 · 508 阅读 · 0 评论 -
从最大似然到EM算法浅解
最大似然:假设观测值已经符合某分布,而这个分布有未知参数,那么通过让观测值期望最大化,来求这个参数。即求得的这个参数的值会让观测值正好/恰好符合这个分布,而不是"大概"符合。使得所有实例同时发生的概率的乘积最大的参数——Pai(p(xi))从最大似然到EM算法浅解 [source url] http://blog.csdn.net/zouxy09/ar转载 2014-03-31 22:41:29 · 431 阅读 · 0 评论 -
SVD 的物理意义
[source url] http://www.puffinwarellc.com/index.php/news-and-articles/articles/30-singular-value-decomposition-tutorial.html#pgre0Article IndexSingular Value Decompositio转载 2014-03-31 16:12:47 · 634 阅读 · 0 评论 -
主题模型-LDA[LatentDirichlet Allocation]
原文地址:http://blog.csdn.net/huagong_adu/article/details/7937616分类: 数据挖掘 机器学习(一)LDA作用 传统判断两个文档相似性的方法是通过查看两个文档共同出现的单词的多少,如TF-IDF等,这种方法没有考虑到文字背后的语义关联,可能在两个文档共同出现的单词很少甚至没有,但两个文档是相似的。转载 2014-03-31 15:46:07 · 702 阅读 · 0 评论 -
[paper reading] Neural Belief Tracker: Data-Driven Dialogue State Tracking
论文出处:paper title: Neural Belief Tracker: Data-Driven Dialogue State Trackingauthors: Nikola Mrksiˇ c´, Diarmuid O S ´ eaghdha ´Tsung-Hsien Wen, Blaise Thomson, Steve Youngconference: acl2017PDF: https...原创 2018-03-18 21:14:06 · 2311 阅读 · 1 评论 -
[paper] Zero-Shot Learning with Semantic Output Codes [NIPS 2009]
Zero-Shot Learning with Semantic Output Codes [NIPS 2009]zero-shot和one-shot:在分类场景下(或序列标注或NLU),在已知的几个topic或domain内(domain A,B,C),已经训练出了性能较好的分类器。此时想解决针对新的domain D的分类问题,然而D domain的样本非常少(one-shot),或者没有(ze...原创 2018-04-23 12:48:01 · 833 阅读 · 0 评论 -
Smart Reply for Google Email System
[未完待续]谷歌最近比较火的邮件自动回复系统,作者对该系统提出了如下的要求或者目标:原创 2018-06-21 21:28:17 · 1717 阅读 · 1 评论