--- 记忆化搜索 矩阵中的最长递增路径 ---

矩阵中最长递增路径

这道题就可以完全可以先按照我之前整理的那么递归遍历的模板,能够完美的适配 秒咯

衣橱整理 剑指 Offer 13. 机器人的运动范围-CSDN博客 这一篇

他的题意是在这个数组中有个点,他有一条最长的递增路径,而我们要放回他的路径的长度

那么这个点可以是任何位置,所以需要遍历整个数组来找到这个位置,每次遍历代表从这个开始找到最长的递增路径的长度,而递归遍历这个数组,我整理的那个模板能完美适配,最终在把遍历整个数组的点之后,返回最长的就好了

当然就这样肯定是过不了的,毕竟是diff的题,这样时间复杂度太恐怖了,而我们的优化就是使用记忆化搜索,我们发现在寻找4这个位置的最长递归路径时,他需要递归到左边的9取找到9的最长路径,而这个9的最长路径其实是在4遍历之前就已经找到过了,那么我就可以把他储存起来直接使用了,对于重复问题的解决就可以使用记忆化搜索

通过代码

    int m, n;
    int[] dx = {0, 0, -1, 1};
    int[] dy = {-1, 1, 0, 0};
    int[][] mome;
    int[][] matrix;
    public int longestIncreasingPath(int[][] _matrix) {
        matrix = _matrix;
        m = matrix.length;
        n = matrix[0].length;
        mome = new int[m][n];

        for(int i = 0; i < m; i++){
            Arrays.fill(mome[i], -1);
        }

        int max = 1;
        for(int y = 0; y < m; y++){
            for(int x = 0; x < n; x++){
                max = Math.max(dfs(y, x), max);
            }
        }

        return max;
    }

    //表示的是从这个位置开始的最长的递增路径
    int dfs(int y, int x){
        if(mome[y][x] != -1) return mome[y][x];

        int max = 1;
        for(int i = 0; i < 4; i++){
            int yy = y + dy[i];
            int xx = x + dx[i];

            if(yy < 0 || yy == m || xx < 0 || xx == n) continue;

            if(matrix[yy][xx] > matrix[y][x]){
                max = Math.max(dfs(yy, xx) + 1, max);               
            }
        }

        mome[y][x] = max;
        return max;
    }

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值