这道题就可以完全可以先按照我之前整理的那么递归遍历的模板,能够完美的适配 秒咯
衣橱整理 剑指 Offer 13. 机器人的运动范围-CSDN博客 这一篇

他的题意是在这个数组中有个点,他有一条最长的递增路径,而我们要放回他的路径的长度
那么这个点可以是任何位置,所以需要遍历整个数组来找到这个位置,每次遍历代表从这个开始找到最长的递增路径的长度,而递归遍历这个数组,我整理的那个模板能完美适配,最终在把遍历整个数组的点之后,返回最长的就好了
当然就这样肯定是过不了的,毕竟是diff的题,这样时间复杂度太恐怖了,而我们的优化就是使用记忆化搜索,我们发现在寻找4这个位置的最长递归路径时,他需要递归到左边的9取找到9的最长路径,而这个9的最长路径其实是在4遍历之前就已经找到过了,那么我就可以把他储存起来直接使用了,对于重复问题的解决就可以使用记忆化搜索
通过代码
int m, n;
int[] dx = {0, 0, -1, 1};
int[] dy = {-1, 1, 0, 0};
int[][] mome;
int[][] matrix;
public int longestIncreasingPath(int[][] _matrix) {
matrix = _matrix;
m = matrix.length;
n = matrix[0].length;
mome = new int[m][n];
for(int i = 0; i < m; i++){
Arrays.fill(mome[i], -1);
}
int max = 1;
for(int y = 0; y < m; y++){
for(int x = 0; x < n; x++){
max = Math.max(dfs(y, x), max);
}
}
return max;
}
//表示的是从这个位置开始的最长的递增路径
int dfs(int y, int x){
if(mome[y][x] != -1) return mome[y][x];
int max = 1;
for(int i = 0; i < 4; i++){
int yy = y + dy[i];
int xx = x + dx[i];
if(yy < 0 || yy == m || xx < 0 || xx == n) continue;
if(matrix[yy][xx] > matrix[y][x]){
max = Math.max(dfs(yy, xx) + 1, max);
}
}
mome[y][x] = max;
return max;
}
矩阵中最长递增路径
1366

被折叠的 条评论
为什么被折叠?



