解法1:我们可以把棋盘的左下角看做二维坐标的原点(0,0),把棋盘的右上角看做二维坐标(M,N)(坐标系的单位长度为小方格的变长)
用f(i,j)表示移动到坐标f(i,j)的走法总数,其中0=<i,j<=n,
设f(m,n)代表从坐标(0,0)到坐标(m,n)的移动方法,则
f(m,n)=f(m-1,n)+f(m,n-1).
该博客探讨了一个经典的数学问题:在一个M*N的棋盘上,从左下角到右上角的合法路径总数。通过状态转移方程f(i,j)=f(i-1,j)+f(i,j-1),可以解决这个问题。当边界条件为i=0或j=0时,方程有所调整。初始条件为f(0,0)=0, f(0,1)=1, f(1,0)=1。非递归方法能在O(n^2)时间和O(n^2)空间复杂度内求解此问题。"
117470950,9124457,CentOS7环境下微服务项目离线部署实战,"['java', '微服务', '内网部署', 'centos7', '数据库']
f(m,n)=f(m-1,n)+f(m,n-1).
6048
2074
335

被折叠的 条评论
为什么被折叠?