light oj 1145 - Dice (I) DP计数

链接: http://www.lightoj.com/volume_showproblem.php?problem=1145

题意:n个骰子,每个骰子都有k个面,数字分别为1~k

问:n个骰子最上面的面的数字加起来为S的摆放方案共有几种

凭感觉可以联想到这样一种DP

dp[i][j]表示前i个骰子的和小于等于j时的总方案数,然后转移的时候可以这样

dp[i+1][j]=dp[i+1][j-1]+(dp[i][j-1]-dp[i][j-k-1]) (j-k-1>=0,要不然就是0)

dp[i+1][j-1]是小于j的方案总数,后面这个自然是等于j的方案总数因为前i个骰子组成

j-k ~ j-1之间的数时都可以通过加上第i+1个骰子的数组成j,所以应该加上后面这个差

好了,既然都设计好了,那就写吧,但一看,数据范围--!,n=1000,S=15000,

给了两秒,时间可以过,空间就卡了,

仔细一想,当前层的状态只需要上一层的状态就够了

,以前的状态不用保存,所以用滚动空间来保存吧

#include<cstdio>
#include<cstring>
typedef long long lld;
const lld mod = 100000007;
const int maxn = 15010;
lld dp[2][maxn];
int n,k,s;
lld get(int a,int l,int r)
{
    lld x=0;
    l-=1;
    if(l>=0) x=dp[a][l];
    lld y=dp[a][r];
    return y-x;
}
lld solve()
{
    memset(dp,0,sizeof(dp));
    int a=0,b=1;
    for(int i=0;i<=s;i++) dp[a][i]=1;
    for(int i=0;i<n;i++)
    {
        dp[b][0]=0;
        for(int j=1;j<=s;j++)
        {
            dp[b][j]=dp[b][j-1]+get(a,j-k,j-1);
            dp[b][j]%=mod;
        }
        a^=1;
        b^=1;
    }
    return (get(a,s,s)%mod+mod)%mod;
}
int main()
{
    int t,ca=1;
    scanf("%d",&t);
    while(t--)
    {
        scanf("%d%d%d",&n,&k,&s);
        printf("Case %d: %lld\n",ca++,solve());
    }
    return 0;
}




评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值