#include <stdio.h>
#include <string.h>
#include <memory.h>
int m;//记录字符串长度
int n;//记录字符串中的字符种类数
char map[256];//记录是哪几种字符
int count[256];//记录每种字符有多少个
void Make_Map(char *str)//统计字符串的相关信息
{
int s[256];
int i;
memset(s,0,sizeof(s));
memset(count,0,sizeof(count));
m=strlen(str);
while(*str)
{
s[*str]++; //*str为字符,s[字符],字符转换成ASCII码,s[字符]++,同一种类字符计数,原来为0,
str++; //(接上)这是一种常见的映射.
}
n=0;
for (i=0;i<256;i++)
if (s[i])
{
map[n]=i; //n记录了字符种类数,map[n]记录了原来*str的值.
count[n]=s[i]; //count[n]记录每种字符的个数
n++;
}
}
int stack[1000];//递归用的栈,并记录当前生成的排列
void Find(int depth)//递归式回溯法生成全排列
{
int k=0;
if (depth==m)
{
int i;
for (i=0;i<depth;i++) {putchar(map[stack[i]]);
//printf("%d\n",k);
}
putchar('\n');
}
else
{
int i;
for (i=0;i<n;i++) //这里开始只用到map,count数组,他们分别记录了字符ascii,相同字符出现个数.
if (count[i])
{
stack[depth]=i; //先把这个值存到堆栈,
count[i]--; //后面递归不用这个值了,减掉一个
Find(depth+1); //假设这个能得到子序列的全排列
count[i]++; //处于当前循环中,恢复这个值,这是因为全排列的算法要求,
//考虑第一层,即取ri,对但是要对剩余的 n-1个数取全排列
}
}
}
void main()
{
char str[1000];
gets(str);
Make_Map(str);
Find(0);
}
===============================================
全排列的算法
perm(m)为m个数r1,r2,.....rm的全排列
riperm(m-1),表示取出ri,然后对剩余的m-1个数进行全排列.
则perm(m)可表示为
r1perm(m-1),r2perm(m-1),...rmperm(m-1)
#include <string.h>
#include <memory.h>
int m;//记录字符串长度
int n;//记录字符串中的字符种类数
char map[256];//记录是哪几种字符
int count[256];//记录每种字符有多少个
void Make_Map(char *str)//统计字符串的相关信息
{
int s[256];
int i;
memset(s,0,sizeof(s));
memset(count,0,sizeof(count));
m=strlen(str);
while(*str)
{
s[*str]++; //*str为字符,s[字符],字符转换成ASCII码,s[字符]++,同一种类字符计数,原来为0,
str++; //(接上)这是一种常见的映射.
}
n=0;
for (i=0;i<256;i++)
if (s[i])
{
map[n]=i; //n记录了字符种类数,map[n]记录了原来*str的值.
count[n]=s[i]; //count[n]记录每种字符的个数
n++;
}
}
int stack[1000];//递归用的栈,并记录当前生成的排列
void Find(int depth)//递归式回溯法生成全排列
{
int k=0;
if (depth==m)
{
int i;
for (i=0;i<depth;i++) {putchar(map[stack[i]]);
//printf("%d\n",k);
}
putchar('\n');
}
else
{
int i;
for (i=0;i<n;i++) //这里开始只用到map,count数组,他们分别记录了字符ascii,相同字符出现个数.
if (count[i])
{
stack[depth]=i; //先把这个值存到堆栈,
count[i]--; //后面递归不用这个值了,减掉一个
Find(depth+1); //假设这个能得到子序列的全排列
count[i]++; //处于当前循环中,恢复这个值,这是因为全排列的算法要求,
//考虑第一层,即取ri,对但是要对剩余的 n-1个数取全排列
}
}
}
void main()
{
char str[1000];
gets(str);
Make_Map(str);
Find(0);
}
===============================================
全排列的算法
perm(m)为m个数r1,r2,.....rm的全排列
riperm(m-1),表示取出ri,然后对剩余的m-1个数进行全排列.
则perm(m)可表示为
r1perm(m-1),r2perm(m-1),...rmperm(m-1)