未来行业发展趋势分析

一、行业发展趋势:各种新科技的成熟演变一般分为5个阶段:1、  萌芽期(TechnologyTrigger): 媒体的过度曝光等因素导致技术在没有成熟前就被大肆渲染。2、  过热期(Peak ofInflated Expectations):受到高度关注的技术被推到了发展的顶峰期,大量的投资在这一...

2018-02-25 21:29:06

阅读数:1955

评论数:0

人工智能思考

一、人工智能初级阶段:1、  人工智能的初级阶段,就是用机器去代替低级重复性强的人工工作。2、  比如汽车驾驶,飞机驾驶,船驾驶。还有一些特殊行业的驾驶,比如高危作业驾驶,比如测绘船,比如军用无人机等。3、  比如人工视频图片审核(鉴黄等),搜索视频监控中的犯罪嫌疑人。4、  语音助理,代替客服,...

2018-02-25 21:25:13

阅读数:114

评论数:0

防止过拟合的方法

参考:https://www.zhihu.com/question/592015901、ssd default box和 faster R-CNN anchor 区别   Faster RCNN中anchor只用在最后一个卷积层,   SSD 的default box是应用在不同尺度的featur...

2018-02-24 17:53:56

阅读数:246

评论数:0

深度学习超参数简单理解 learning rate,weight decay和momentum

转自:https://zhuanlan.zhihu.com/p/23906526说到这些参数就会想到Stochastic Gradient Descent (SGD)!其实这些参数在caffe.proto中 对caffe网络中出现的各项参数做了详细的解释。Learning Rate学习率决定了权值...

2018-02-24 16:21:23

阅读数:258

评论数:0

运动目标检测之“光流法”

转自:http://www.cnblogs.com/wxl845235800/p/6729406.htmlopencv 光流法sample code:https://docs.opencv.org/3.3.1/d7/d8b/tutorial_py_lucas_kanade.html1950年,Gi...

2018-02-12 17:43:45

阅读数:543

评论数:0

HOG算法整理(本人)

一、参考:1、  目标检测的图像特征提取之(一)HOG特征http://blog.csdn.net/zouxy09/article/details/7929348 2、  https://www.zhihu.com/question/45833619  知乎3、  待续二、HOG介绍1、  HOG...

2018-02-12 16:59:23

阅读数:646

评论数:0

SIFT算法整理(本人)

一、参考:https://www.zhihu.com/question/19911080SIFT解析(一)建立高斯金字塔http://blog.csdn.net/alecsophia/article/details/17509195SIFT解析(二)特征点位置确定http://blog.csdn....

2018-02-12 16:47:03

阅读数:104

评论数:0

SURF算法整理(本人)

一、参考:1、SURF特征提取分析http://blog.csdn.net/songzitea/article/details/169864232、待续 二、SURF (Speeded UpRobust Features)算法介绍:1、  SURF与SIFT算法相似,SIFT算法比较稳定,检测特征...

2018-02-12 16:45:46

阅读数:816

评论数:0

监督算法大比拼之BP、SVM、adaboost非线性多分类实验

转自:http://blog.csdn.net/on2way/article/details/48006539写在之前:前些文章曾经细数过从决策树、贝叶斯算法等一些简单的算法到神经网络(BP)、支持向量机(SVM)、adaboost等一些较为复杂的机器学习算法(对其中感兴趣的朋友可以往前的博客看看...

2018-02-11 17:31:39

阅读数:80

评论数:0

图像特征提取三大法宝:HOG特征,LBP特征,Haar特征

转自:http://blog.csdn.net/jscese/article/details/52954208(一)HOG特征1、HOG特征:方向梯度直方图(Histogram of Oriented Gradient, HOG)特征是一种在计算机视觉和图像处理中用来进行物体检测的特征描述子。它通...

2018-02-11 17:11:51

阅读数:64

评论数:0

seetaface 人脸检测算法简析

转自:http://blog.csdn.net/abc20002929/article/details/75193876一、前言    使用opencv的lbp人脸检测算法准确率、误检率表现均不是很好,另外算法需跑在ARM上,虽然深度学习一些算法如mtcnn效果很好,但速度很难保证。最终,查阅了s...

2018-02-11 15:45:44

阅读数:486

评论数:0

局部特征(4)——SIFT和SURF的比较

转自:http://blog.csdn.net/jwh_bupt/article/details/6567452局部特征(1)——入门篇局部特征(2)——Harris角点 局部特征(3)——SURF特征总结 局部特征(4)——SIFT和SURF的比较 局部特征(5)——如何利用彩色信息 Color...

2018-02-11 15:06:31

阅读数:75

评论数:0

支持向量机(SVM)

转自:https://www.zhihu.com/question/21094489一般SVM用来做分类器(classification)来使用      支持向量机(Support Vector Machine)是Cortes和Vapnik于1995年首先提出的,它在解决小样本、非线性及高维模式...

2018-02-11 14:12:22

阅读数:67

评论数:0

什么是SeetaFace开源人脸识别引擎?

转自:https://www.leiphone.com/news/201612/MTJV8mgFblohSTIh.html区分不同的人是很多智能系统的必备能力。为实现此目的,一种可能的技术手段是通过对人脸的光学成像来感知人、识别人,即所谓的人脸识别技术。经过几十年的研发积累,特别是近年来深度学习技...

2018-02-08 13:53:34

阅读数:167

评论数:0

Haar AdaBoost人脸检测原理

转自:http://blog.sina.com.cn/s/blog_4e6680090100d2se.html 对人脸检测的研究最初可以追溯到 20 世纪 70 年代,早期的研究主要致力于模板匹配、子空间方法,变形模板匹配等。近期人脸检测的研究主要集中在基于数据驱动的学习方法,如统计模型方法,神...

2018-02-07 17:37:03

阅读数:154

评论数:0

机器学习之(四)特征工程以及特征选择的工程方法

转自:http://blog.csdn.net/boon_228/article/details/51749646      关于特征工程(Feature Engineering),已经是很古老很常见的话题了,坊间常说:“数据和特征决定了机器学习的上限,而模型和算法只是逼近这个上限而...

2018-02-07 10:28:31

阅读数:166

评论数:0

机器学习中样本的样本量的估计(VC维)

转自:http://blog.csdn.net/uestc_c2_403/article/details/72859021 在机器学习中,如果样本量不足,我们利用模型学习到的结果就有可能是错误的,因为样本不足的情况下,规则会有很多。也就是我们如果用f表示真是的规则,用g表示利用模型学习到...

2018-02-06 10:31:52

阅读数:649

评论数:0

SSD(single shot multibox detector)算法及Caffe代码详解

转自:http://blog.csdn.net/u014380165/article/details/72824889 这篇博客主要介绍SSD算法,该算法是最近一年比较优秀的object detection算法,主要特点在于采用了特征融合。 论文:SSD single shot m...

2018-02-02 17:46:33

阅读数:76

评论数:0

Gartner:2017年中国新兴技术成熟度曲线

转自:http://tech.sina.com.cn/roll/2017-08-06/doc-ifyiswpt5578432.shtml https://www.iyiou.com/p/51801 https://36kr.com/p/5089303.html 每年Gartner...

2018-02-01 09:49:41

阅读数:5147

评论数:0

提示
确定要删除当前文章?
取消 删除
关闭
关闭