侧脸眼球识别

图片如下:

识别眼球的位置。

因为在深度学习当中,其主要思路是利用神经网络的非线性映射关系在标注的数据和输入的数据之间找到一个最优映射路径,通过这个映射关系去逼近我们的目标,但是这种方法的缺点是肯定会存在过拟合的问题。究其原因是人脸相似度很高(即使说是千人千脸,但是对比起其他动物的脸,其他物体和人脸对比其人脸与人脸之间的相识度依然非常高),在高相似度中间找到不同人脸之间的细微差别是非常困难的,因此出现了很多方法去解决这个问题,但是各论文分别去解决各自所在细分领域或者细分问题上,并没有一个很好的框架或者算法去解决这问题。

CVPR:A Prior-Less Method for Multi-Face Tracking in Unconstrained Videos

为了解决在视频流中人脸变化复杂,黑暗情况变化差异大的问题,文章并没有直接使用一个大统一的模型去解决这个问题,而是结合三个模块分别使用不同的数学模型去检测人脸。对于第一阶段使用一个Co-occurentce model对人体姿态和人脸进行估计,因为人体基本姿态和人脸是相互作用的关系,特别是对于连续帧来说,因此使用Co-occurentce模型作为第一阶段;第二阶段使用VGG特征作为强关联信息进行聚类提取人脸特征出来;最后阶段使用高斯处理模型对深度特征进行补充和提取精细化的结果。因为设计到的数学理论和模型较多,因此如果想要细节理解需要阅读原论文。

数据集:

MVFW 人脸数据库为多视角人脸数据集,包括 2050 幅训练人脸图像和 450 幅测试人脸图像,每个人脸标定 68 个关键点。

传统人脸关键点检测数据库为室内环境下采集的数据库,比如 Multi-pie、Feret、Frgc、AR、BioID 等人脸数据库。

人脸检测数据集

Wider Face数据集转VOC格式数据集编程实现

YOLO3训练widerface数据集

WiderFace数据集用于训练人脸检测模型

将数据集制作成VOC数据集格式

人脸关键点检测数据集:

CelebA数据集详细介绍及其属性提取源代码

参考文献:

第三十七节、人脸检测MTCNN和人脸识别Facenet(附源码)

眼球识别控制系统

人脸关键点检测综述

深度 | 级联MobileNet-V2实现人脸关键点检测(附训练源码) 

CVPR2018|侧脸识别:深度残差恒等映射

 

发布了366 篇原创文章 · 获赞 147 · 访问量 32万+
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 大白 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览