五轴机床 AB 双转台结构 正解与逆解模型

1. 结构定义(AB型双转台)

AB型五轴机床由三个直线轴(X, Y, Z)和两个旋转轴(A轴:绕X轴旋转,B轴:绕Y轴旋转)组成,工件安装在两个旋转轴上(A轴和B轴构成双转台),刀具仅通过XYZ移动。

  • A轴:绕X轴旋转,角度记为 a(单位:弧度或度)
  • B轴:绕Y轴旋转,角度记为 b
  • 直线轴位置:(x,y,z)
  • 工件坐标系下目标点:P=(Px​,Py​,Pz​)
  • 刀具方向单位向量:D=(dx​,dy​,dz​)
  • 从B轴到A轴的偏置向量:OBA​=(ox​,oy​,oz​)
  • 从A轴到工件原点的偏置向量:OA​=(ax​,ay​,az​)

2. 正运动学模型(Forward Kinematics)

已知:直线轴位置 (x,y,z),旋转轴角度 a,b

求:刀具与工件在空间中的相对位置和方向

(1)旋转矩阵构造

B轴旋转矩阵(绕Y轴):

Ry(b) = 
[ cos(b), 0, sin(b)]
[   0   , 1,   0   ]
[-sin(b), 0, cos(b)]

A轴旋转矩阵(绕X轴):

Rx(a) = 
[1,    0   ,    0   ]
[0, cos(a), -sin(a)]
[0, sin(a),  cos(a)]

总旋转矩阵(先B后A): R = Rx(a) × Ry(b)

展开为:

R = [
  cos(b),                0               ,        sin(b)        ;
 -sin(b)*sin(a),  cos(a),  cos(b)*sin(a);
 -sin(b)*cos(a), -sin(a),  cos(b)*cos(a)
]

(2)工件原点在机床坐标系中的位置

设:

  • B轴旋转中心为原点
  • 从B轴到A轴的偏置:O_BA = (o_x, o_y, o_z)
  • 从A轴到工件原点的偏置:O_A = (a_x, a_y, a_z)

则工件原点在机床坐标系中的位置为:

P_workpiece = R × (O_A) + Ry(b)^T × O_BA

更准确地: P_w = Ry(b)^T × O_BA + R × O_A

其中 Ry(b)^T = Ry(-b)

即: P_wx = o_x * cos(b) - o_z * sin(b) + R[0][0]*a_x + R[0][1]*a_y + R[0][2]*a_z
P_wy = o_y + R[1][0]*a_x + R[1][1]*a_y + R[1][2]*a_z
P_wz = o_x * sin(b) + o_z * cos(b) + R[2][0]*a_x + R[2][1]*a_y + R[2][2]*a_z

(3)刀具方向在工件坐标系中的表示

刀具方向在机床坐标系中为 D_tool=(0,0,−1)(假设Z向下)

在工件坐标系中,其方向为: D_workpiece = R^T × (0, 0, -1)^T

即取 R 的第三行取负:

d_x = sin(b)
d_y = -cos(b)*sin(a)
d_z = -cos(b)*cos(a)

3. 逆运动学模型(Inverse Kinematics)

已知:工件上目标点 P=(P_x,P_y,P_z),刀具方向 D=(d_x,d_y,d_z)(单位向量,指向切削方向)

求:直线轴位置(x,y,z) 和旋转角 a,b

(1)求解旋转角 b 和 a

由正解中刀具方向关系:

d_x = sin(b)
d_y = -cos(b) * sin(a)
d_z = -cos(b) * cos(a)

解法:

① 求 B 轴角度 b: b = arcsin(d_x)
或更稳健地(避免除零): b = atan2(d_x, sqrt(1 - d_x^2))
但更推荐: b = asin(clamp(d_x, -1, 1))

② 求 A 轴角度 a:

若 cos(b) ≠ 0(即 |b| < 90°): a = atan2( -d_y, -d_z )

注意:atan2(y, x) 返回角度

(2)求解直线轴位置 (x, y, z)

目标是使刀尖到达工件点 P 在机床坐标系中的位置。

刀尖在机床坐标系中的位置为: P_tool = P_w + R × P

其中 P_w 是工件原点在机床坐标系的位置(含偏置)

但更直接的方法是:

设刀尖在机床坐标系中应位于: P_machine = R × (P + O_A) + Ry(-b) × O_BA

而刀具由 (x,y,z) 控制,故: x = P_machine_x
y = P_machine_y
z = P_machine_z

即: x = [cos(b)(P_x + a_x) + sin(b)(P_z + a_z)] + [o_xcos(b) - o_zsin(b)]
y = [-sin(b)sin(a)(P_x + a_x) + cos(a)(P_y + a_y) + cos(b)sin(a)(P_z + a_z)] + o_y
z = [-sin(b)cos(a)(P_x + a_x) - sin(a)
(P_y + a_y) + cos(b)cos(a)(P_z + a_z)] + [o_xsin(b) + o_zcos(b)]

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值