【组合数学】生成函数 ( 正整数拆分 | 重复有序拆分 | 不重复有序拆分 | 重复有序拆分方案数证明 )



参考博客 : 按照顺序看





一、重复有序拆分



将 正整数 N N N 重复地 , 有序拆分 r r r 部分 , 方案数为 C ( N − 1 , r − 1 ) C(N-1, r-1) C(N1,r1)

( 三、中有该组合数由来证明 )



如果对 正整数 N N N任意重复的有序拆分 , 即可以拆分成 1 1 1 个数 , 2 2 2 个数 , ⋯ \cdots , N N N 个数 ,

拆分成 1 1 1 个数方案个数是 ( N − 1 1 − 1 ) \dbinom{N-1}{1-1} (11N1)

拆分成 2 2 2 个数方案个数是 ( N − 1 2 − 1 ) \dbinom{N-1}{2-1} (21N1)

⋮ \vdots

拆分成 N N N 个数方案个数是 ( N − 1 N − 1 ) \dbinom{N-1}{N-1} (N1N1)

上述总的方案个数是 : ∑ r = 1 N = 2 N − 1 \sum\limits_{r=1}^{N}=2^{N-1} r=1N=2N1

( 根据基本组合恒等式计算出来 )





二、不重复有序拆分



先进行 不重复无序拆分 , 再进行 全排列 ;



1、无序拆分基本模型


无序拆分基本模型 :

将 正整数 N N N 无序拆分成正整数 , a 1 , a 2 , ⋯   , a n a_1, a_2, \cdots , a_n a1,a2,,an 是拆分后的 n n n 个数 ,

该拆分是无序的 , 上述拆分的 n n n 个数的个数可能是不一样的 ,

假设 a 1 a_1 a1 x 1 x_1 x1 , a 2 a_2 a2 x 2 x_2 x2 个 , ⋯ \cdots , a n a_n an x n x_n xn , 那么有如下方程 :

a 1 x 1 + a 2 x 2 + ⋯ + a n x n = N a_1x_1 + a_2x_2 + \cdots + a_nx_n = N a1x1+a2x2++anxn=N


这种形式可以使用 不定方程非负整数解个数 的生成函数计算 , 是 带系数 , 带限制条件的情况 , 参考 : 组合数学】生成函数 ( 使用生成函数求解不定方程解个数 )


无序拆分的情况下 , 拆分后的正整数 , 允许重复 和 不允许重复 , 是两类组合问题 ;

如果不允许重复 , 那么这些 x i x_i xi 的取值 , 只能 取值 0 , 1 0, 1 0,1 ; 相当于 带限制条件 , 带系数不定方程非负整数解 的情况 ;

对应的生成函数是 : G ( x ) = ( 1 + y a 1 ) ( 1 + y a 2 ) ⋯ ( 1 + y a n ) G(x) = (1+ y^{a_1}) (1+ y^{a_2}) \cdots (1+ y^{a_n}) G(x)=(1+ya1)(1+ya2)(1+yan)重点看这里



如果 允许重复 , 那么这些 x i x_i xi 的取值 , 就是 自然数 ; 相当于 带系数不定方程非负整数解 的情况 ;

对应的生成函数是 : G ( x ) = ( 1 + y a 1 + y 2 a 1 ⋯   ) ( 1 + y a 2 + y 2 a 2 ⋯   ) ⋯ ( 1 + y a n + y 2 a n ⋯   ) G(x) = (1+ y^{a_1}+ y^{2a_1}\cdots) (1+ y^{a_2} + y^{2a_2}\cdots) \cdots (1+ y^{a_n}+ y^{2a_n}\cdots ) G(x)=(1+ya1+y2a1)(1+ya2+y2a2)(1+yan+y2an)

G ( x ) = 1 ( 1 − y a 1 ) ( 1 − y a 2 ) ⋯ ( 1 − y a n ) G(x) =\cfrac{1}{ (1-y^{a_1}) (1-y^{a_2}) \cdots (1-y^{a_n}) } G(x)=(1ya1)(1ya2)(1yan)1



2、全排列


n n n 的全排列是 n ! n! n!



n n n 元集 S S S , S S S 集合中选取 r r r 个元素 ;

根据 元素是否允许重复 , 选取过程是否有序 , 将选取问题分为四个子类型 :

元素不重复元素可以重复
有序选取集合排列 P ( n , r ) P(n,r) P(n,r)多重集排列
无序选取集合组合 C ( n , r ) C(n,r) C(n,r)多重集组合

选取问题中 :

  • 不可重复的元素 , 有序的选取 , 对应 集合的排列 ; P ( n , r ) = n ! ( n − r ) ! P(n,r) = \dfrac{n!}{(n-r)!} P(n,r)=(nr)!n!
  • 不可重复的元素 , 无序的选取 , 对应 集合的组合 ; C ( n , r ) = P ( n , r ) r ! = n ! r ! ( n − r ) ! C(n,r) = \dfrac{P(n,r)}{r!} = \dfrac{n!}{r!(n-r)!} C(n,r)=r!P(n,r)=r!(nr)!n!
  • 可重复的元素 , 有序的选取 , 对应 多重集的排列 ; 全 排 列 = n ! n 1 ! n 2 ! ⋯ n k ! 全排列 = \cfrac{n!}{n_1! n_2! \cdots n_k!} =n1!n2!nk!n! , 非全排列 k r ,    r ≤ n i k^r , \ \ r\leq n_i kr,  rni
  • 可重复的元素 , 无序的选取 , 对应 多重集的组合 ; N = C ( k + r − 1 , r ) N= C(k + r - 1, r) N=C(k+r1,r)




三、重复有序拆分方案数证明



使用一一对应的方法证明 : 将 正整数 N N N 重复地 , 有序拆分 r r r 部分 , 方案数为 C ( N − 1 , r − 1 ) C(N-1, r-1) C(N1,r1)


拆分后的正整数 , 如果交换了次序之后 , 排列不同 , 其所代表的方案数也不同 ;

将该拆分转换成组合计数问题 ;

假设 N = a 1 + a 2 + ⋯ + a r N=a_1 + a_2 + \cdots + a_r N=a1+a2++ar 是满足条件的拆分 , 该拆分 重复 , 有序 ;

将上述方案 , 做成部分序列 ,


拆分方案 与 拆分序列 :


根据拆分方案写出拆分序列 :

原始方案 6 = 1 + 2 + 3 6=1+2+3 6=1+2+3 , 由原始方案作部分序列 ,

第一个序列 S 1 = 1 S_1 = 1 S1=1 , 取原始方案的第一个成分 1 1 1 出来 ,

第二个序列 S 2 = 1 + 2 = 3 S_2 = 1 + 2 = 3 S2=1+2=3 , 取原始方案的前两个成分 1 + 2 1 + 2 1+2 出来 ,

第三个序列 S 3 = 1 + 2 + 3 = 6 S_3 = 1 + 2 + 3 = 6 S3=1+2+3=6 , 取原始方案的前三个成分 1 + 2 + 3 1 + 2 + 3 1+2+3 出来 ,

第一个序列是第一个数 , 第二个序列是前两个数 , 第 n n n 个序列是前 n n n 个数 , 最后一个序列包含了所有的拆分的正整数 ;

只要给定一个原始方案 , 就可以作出上述部分序列出来 ;


只要方案相同 , 作出的序列完全相同 , 方案不同 , 作出的序列肯定不相同 ;


根据拆分序列写出拆分方案 :

反之 , 给定一个序列 , 可以 还原出一个拆分方案来 , 如给出序列 S 1 = 1 , S 2 = 3 , S 3 = 6 S_1 = 1 , S_2=3, S_3=6 S1=1,S2=3,S3=6 , 对应的拆分方案 :

最后一个序列式所有数之和 , 被拆分的正整数就是最后一个序列的数值 6 6 6

第一个正整数 就是第一个序列 1 1 1

第二个正整数 是第二序列减去第一序列 S 2 − S 1 = 3 − 1 = 2 S_2 - S_1 = 3-1=2 S2S1=31=2

第三个正整数 是第三序列减去第二序列 S 3 − S 2 = 6 − 3 = 3 S_3-S_2=6-3=3 S3S2=63=3

拆分方案是 6 = 1 + 2 + 3 6 = 1+2+3 6=1+2+3



N = a 1 + a 2 + ⋯ + a r N=a_1 + a_2 + \cdots + a_r N=a1+a2++ar 的拆分序列是

S 1 = a 1 S_1 = a_1 S1=a1

S 2 = a 1 + a 2 S_2= a_1 + a_2 S2=a1+a2

S 3 = a 1 + a 2 + a 3 S_3= a_1 + a_2 + a_3 S3=a1+a2+a3

⋮ \vdots

S i = a 1 + a 2 + a 3 + ⋯ + a i = ∑ k = 1 t a i   ,       i = 1 , 2 , 3 , ⋯ S_i= a_1 + a_2 + a_3 + \cdots + a_i = \sum\limits_{k=1}^ta_i\ , \ \ \ \ \ i=1,2,3, \cdots Si=a1+a2+a3++ai=k=1tai ,     i=1,2,3,

上述的拆分序列一定有下面的性质 :

0 < S 1 < S 2 < ⋯ < S r = N 0 < S_1 < S_2 < \cdots < S_r = N 0<S1<S2<<Sr=N

因为 S 2 S_2 S2 肯定是 S 1 S_1 S1 加上一个正整数 , S r S_r Sr 肯定是 S r − 1 S_{r-1} Sr1 加上一个正整数 , 最后一项是所有的 r r r 个正整数之和 , 是被拆分的正整数 N N N ;



上述拆分序列 S 1 , S 2 , ⋯   , S r S_1, S_2, \cdots , S_r S1,S2,,Sr , 最后一个数 S r = N S_r = N Sr=N ,

最后一个数不管 , 前面的 r − 1 r-1 r1 个数的取值范围是 1 , 2 , 3 , ⋯   , N − 1 1, 2, 3, \cdots , N-1 1,2,3,,N1 , 上述取值范围内 n − 1 n-1 n1 个正整数 ;


n − 1 n-1 n1 个正整数中 , 选取 r − 1 r-1 r1 个正整数 ,


因此, 将 正整数 N N N 重复地 , 有序拆分 r r r 部分 , 方案数为 C ( N − 1 , r − 1 ) C(N-1, r-1) C(N1,r1)

  • 4
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值