棋盘问题 POJ - 1321 【dfs】

版权声明:本文为博主原创文章,转载请附上链接 https://blog.csdn.net/han_hhh/article/details/87198179

 

在一个给定形状的棋盘(形状可能是不规则的)上面摆放棋子,棋子没有区别。要求摆放时任意的两个棋子不能放在棋盘中的同一行或者同一列,请编程求解对于给定形状和大小的棋盘,摆放k个棋子的所有可行的摆放方案C。

Input

输入含有多组测试数据。 
每组数据的第一行是两个正整数,n k,用一个空格隔开,表示了将在一个n*n的矩阵内描述棋盘,以及摆放棋子的数目。 n <= 8 , k <= n 
当为-1 -1时表示输入结束。 
随后的n行描述了棋盘的形状:每行有n个字符,其中 # 表示棋盘区域, . 表示空白区域(数据保证不出现多余的空白行或者空白列)。 

Output

对于每一组数据,给出一行输出,输出摆放的方案数目C (数据保证C<2^31)。

Sample Input

2 1
#.
.#
4 4
...#
..#.
.#..
#...
-1 -1

Sample Output

2
1

 

一看就和八皇后问题很像,所以先去解决了八皇后问题,优化了一下,再来看这道题思路清楚多了。变化就是从行出发只需要考虑同列,还要看是否是棋盘不是空白。

深搜部分:

   递归完成条件:

       如果已经放置好的棋数=k,方案数++,此次递归完成。

       从第0行开始,如果r>=n,就出界了,说明没有找到方案,递归完成。

   深搜过程:

       从第0列开始,逐行判断,每一列都用book数组标记该列是否有棋子,若没有,则放棋子,book标记,再看下一行,下一行的列仍从第0列开始,直到达到递归结束条件。

#include<iostream>
#include<cstring>
using namespace std;

int n,k;
int cnt,m;  //cnt为方案个数,m为已确定位置的棋的个数
char chess[10][10];
int book[10]; //book[i]=1代表第i列已经有棋子
void DFS(int r){
    if(m==k){
        cnt++;
        return ;
    }
    if(r>=n)
        return ;
    for(int i=0;i<n;i++){
        if(book[i]==0&&chess[r][i]=='#'){
            book[i]=1;
            m++;
            DFS(r+1);
            book[i]=0;
            m--;
        }
    }
    DFS(r+1);
}

int main(){
    while(scanf("%d%d",&n,&k)!=EOF){
        if(n==-1&&k==-1)
            break;
        cnt=0,m=0;
        for(int i=0;i<n;i++){
            for(int j=0;j<n;j++){
                cin>>chess[i][j];
            }
        }
        memset(book,0,sizeof(book));
        DFS(0);
        printf("%d\n",cnt);
    }
}

 

展开阅读全文

没有更多推荐了,返回首页