using System;
using System.Collections.Generic;
using System.Linq;
namespace Beauty.of.Programming
{
sealed class Move
{
private readonly string _repr;
public Move(int stone1, bool myturn = true)
: this(stone1, null, myturn)
{
}
public Move(int stone1, int? stone2, bool myturn = true)
{
string format1 = myturn ? "<{0}>" : "[{0}]";
string format2 = myturn ? "<{0},{1}>" : "[{0},{1}]";
string format = stone2.HasValue ? format2 : format1;
_repr = string.Format(format, stone1, stone2);
}
public override string ToString()
{
return _repr;
}
}
sealed class Nim
{
static void Main(string[] args)
{
for (int i = 1; i <= 16; ++i)
Nim.FindNimApproach(i);
//Nim.FindNimApproach(7);
}
public static bool FindNimApproach(int n)
{
return new Nim(n).FindNimApproach();
}
private readonly int[] _stones;
private readonly List<Move> _moves;
private int _stonesRemain;
public Nim(int n)
{
_stonesRemain = n;
_stones = new int[n];
for (int i = 0; i < _stones.Length; i++)
_stones[i] = 1;
_moves = new List<Move>();
}
public bool FindNimApproach()
{
bool ret = FindNimHelper();
Console.WriteLine(_stones.Length + " ==> " + (ret ? "Found" : "Failed"));
return ret;
}
private void DumpSuccessfulMoves()
{
//var msg = string.Join(", ", _moves.Reverse());
//Console.WriteLine(msg);
}
private IEnumerable<int> EnumerateStones(bool myturn = true)
{
for (int i = 0; i < _stones.Length; i++)
{
if (_stones[i] != 0)
{
_stones[i] = 0;
_stonesRemain--;
_moves.Add(new Move(i, myturn));
try
{
yield return i;
}
finally
{
_moves.RemoveAt(_moves.Count - 1);
_stonesRemain++;
_stones[i] = 1;
}
}
}
}
private IEnumerable<int> EnumerateContinuousStones(bool myturn = true)
{
for (int i = 1; i < _stones.Length; i++)
{
if (_stones[i] != 0 && _stones[i - 1] != 0)
{
_stones[i] = _stones[i - 1] = 0;
_stonesRemain -= 2;
_moves.Add(new Move(i - 1, i, myturn));
try
{
yield return i;
}
finally
{
_moves.RemoveAt(_moves.Count - 1);
_stonesRemain += 2;
_stones[i] = _stones[i - 1] = 1;
}
}
}
}
private bool HasContinousStones()
{
for (int i = 1; i < _stones.Length; i++)
if (_stones[i] > 0 && _stones[i - 1] > 0)
return true;
return false;
}
private bool FindNimHelper()
{
if (_stonesRemain == 1)
return false;
if (_stonesRemain == 2)
return true;
if (_stonesRemain == 3)
{
return HasContinousStones();
}
foreach (var mytake in EnumerateStones())
{
bool fail = EnumerateStones(false).Any(other => !FindNimHelper());
if (fail)
continue;
fail = EnumerateContinuousStones(false).Any(other2 => !FindNimHelper());
if (!fail)
{
DumpSuccessfulMoves();
return true;
}
}
foreach (var mytake2 in EnumerateContinuousStones())
{
bool fail = EnumerateStones(false).Any(other => !FindNimHelper());
if (fail)
continue;
fail = EnumerateContinuousStones(false).Any(other2 => !FindNimHelper());
if (!fail)
{
DumpSuccessfulMoves();
return true;
}
}
return false;
}
}
}
转自:http://arieshout.me/2012/04/nim-problem.html
《编程之美》一书中1.11章节介绍了NIM游戏的取胜问题。N块石头排成一行,每块石头有各自固定的位置。两个玩家依次取石头,每个玩家每次可以取其中任意一块石头,或相邻的两块石头,石头在游戏过程中不能移位(即编号不会改变),最后能将剩下的石头一次取光的玩家获胜。在这样的规则下,先取的玩家可以在第一步取走最中间的一个(总数为奇数时)或者两个(总数为偶数时)石头,然后后续过程中总取与对手取走的石头对称位置的相同数目的石头。因而先取者有必胜策略。
文末的扩展问题部分提出一个问题:若规定最后取光石头的人输,又该如何应对呢?
网上似乎也没有这个问题的明确解法,有的给出过证明石头总数3N+1时无法找到必胜策略其余的则可以,但是可以看出证明过程中有明显的漏洞,而且证明的这个3N+1的命题本来就是错误的……
定义S为石头摆放的一个格局,格局标识石头目前的连续区段的状态以及每个连续区段的石头数目。初始状态下,N块石头连成一体,可以表示为{N},即N个连续的石头。取走第二块石头之后格局变成{1, N-2},即两段数目分别为1和N-2的连续的石头。
这样,问题可以描述为:对于初始格局S_0={N},甲需要找到制胜的策略。甲取完石头将格局变为S_1后,无论乙怎么取(记乙取完后的格局为S_2),甲总能在当前格局S_2中找到制胜的策略。问题转化成S_2上的小一个规模的问题。需要注意,S_2实际应为从S_1中任意取一次石头后可能形成的众多格局中的一个,只要其中任意一个S_2能让甲无法找到制胜策略,那么甲这次从S_0中取石头的方法就是失败的行不通的。依照这种思路,可以使用递归思路检查甲是否能够找到制胜的策略。
当格局中的石头数目C较小时,可以直接检测是否存在制胜途径,这些条件可以作为递归过程中的边界条件,如:
- C=1时,甲必输
- C=2时,甲随意取走其中一个,即赢
- C=3时,如果有连续的两个,甲取走即赢;否则甲必输。这一条件可以使用递归思路转化为C=1或C=2
每一次递归都需要枚举所有可能的情况O(N^2),每一次枚举都需要递归地检查N-2规模上的可能情况,这样下来递归算法的复杂度为O(N^N)。文末列出了未使用缓存删减分支的方法的C#的实现,使用这个方法可以在短时间内跑出N<=15的结果,但是N=16等了十几分钟没出来。
递归过程中会出现大量的重复计算,一种思路是将当前格局的计算结果缓存起来,这样后续的计算中碰到相同的格局时只需要查表。而且,注意到格局{A, B, C}的查找结果和格局{B, A, C}, {C, A, B}等应该是一样的,这样可以在计算和缓存前对格局进行一致性转换,比如将格局中连续区段按区段中包含的石头数目的升序进行排列,这样也可以减少大量重复的分支计算。但是即使这样,当N较大时,可能出现的格局总数增长也将很快(粗看也在O(N^N)的水平),这意味着结果缓存空间的需求的增长也将很快,而且如何有效的索引缓存空间也是一个问题。在取得一定的时间效率增长时,空间可能又会成为问题。在石头总数N<=32的规模下,可以使用一个整型变量表示当前的格局(某位为1代表当前位置有石头,否则为空),这样可以在32位机器上使用一个大数组缓存结果,从而将可计算规模扩展到32左右。
通过对拿石头的步骤进行记录,找到了石头数N=7时的必胜策略,因而上文所述的网络上所说的3N+1时无法找到必胜策略是错误的:
- 先拿第2个石头
- 乙拿走一块或者两块石头后,想办法在剩余的石头中制造{1,1,1}或{2,2}或者{4}的格局,可能的步骤为(<>标识我方拿石头的方法,[]标识对方拿石头的方法,只记录前三步,因为后续即为简单的必败格局了):
- <2>, [1], <3>
- <2>, [3], <1>
- <2>, [4], <5,6>
- <2>, [5], <1>
- <2>, [6], <3,4>
- <2>, [7], <1>
- <2>, [3,4], <6>
- <2>, [4,5], <6>
- <2>, [5,6], <3>
- <2>, [6,7], <4>
N<16时,必胜策略存在的情况为:1×, 2√, 3√, 4×, 5√, 6√, 7√, 8√, 9×, 10√, 11√, 12×, 13√, 14√, 15√。